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INTRODUCTION 

During the past four decades, the research efforts of investigating the mechanical response 
behaviour of engineering materials, under various types of loading, have been ultimately 
significant. The interpretations and applications of mechanical response data have simulated 
powerful advances in research interest and in engineering practice. In this context, widespread 
research work on the subject has established well-profound concepts, principles and results. 

The purpose of this monograph is to introduce the principles of the mechanical 
response of various classes of engineering materials, the identification and interpretation of 
the mechanical response data, properties evaluation, and, whenever possible, application of 
the data to structure-properties relationships. The monograph deals with the subject matter 
in two volumes. Volume I, contains eight chapters and three appendices, concerns itself with 
the basic concepts as pertain to the entire monograph, together with the response behaviour 
of engineering materials under static and quasi-static loading, Thus, Volume I is dedicated to 
the introduction, the basic concepts and principles of the mechanical response of engineering 
materials, together with the pertaining analysis of elastic, elastic-plastic, and viscoelastic 
behaviour. Volume II, consists of ten chapters and one appendix, concerns itself with the 
mechanical behaviour of various classes of materials under dynamic loading, together with 
the effects oflocal and microstructural phenomena on the response behaviour of the material. 
Volume II contains also selected topics concerning intelligent material systems and pattern 
recognition and classification methodology for the characterization of material response 
states. In the majority of the presentation, the two volumes of the monograph treat the 
considered subjects in a generalized three-dimensional fashion. 

Static loading? 
In the case of static loading, one has, at any particular instant of time, a condition of 
static equilibrium. A conventional static tensile test of a material specimen within its 
linear elastic range would be a typical example of this situation. 

Quasi-static Loading? 
A quasi-static deformation process, although it is, in general, time-dependent, is in 
reality a sequence of states of static equilibrium. Typical illustrations of a quasi-static 
deformation process are the quasi-static creep and relaxation processes of engineering 
materials. 

Dynamic Loading? 
The deformation process that occurs in the material under dynamic loading differs to 
a large extent from those due to static or quasi-static loading. When the material is 
subjected to dynamic loading, e.g., a very high rate impulse, the portion of the body 



www.manaraa.com

2 

that contains the point of impact is stressed instantaneously, while the other portions 
may not have yet experienced the effect of the imposed impact. This is due to the fact 
that the imposed dynamic effect will require time to travel, i.e., to propagate, through 
the body. Such propagation of the dynamic effect through the body occurs with a 
particular velocity of propagation which would depend on the specific characteristics 
of the material and the boundary conditions at the instant of time considered. This 
phenomenon is referred to as ''wave propagation". That is, the dynamic deformation 
of materials, under dynamic loading, involves stress wave propagation, whereby the 
inertia and inner kinetics of the material specimen play important roles. 

At strain rates of the order 10-6 to 10"5 s·I, the creep behaviour of the material is the 
primary consideration and creep laws are used to describe the mechanical behaviour. At 
higher rates, e.g., in the range of 10-4 to 1 0"3 s·1, a uniaxial test, or a quasi-static stress-strain 
curve obtained from a constant strain-rate test is used to describe the material behaviour. 
Although the quasi-static stress-strain curve is often treated as an inherent property of the 
material, it is a valid description of the material only at the strain rate at which the test was 
conducted. At higher strain rates, the mechanical response of the material may change, and 
alternate testing techniques have to be used. The range of strain rates from 10"1 to 102 s·1 is 
generally referred to as the intermediate or medium strain-rate regime. Within this regime, 
strain-rate effects become a consideration in most materials (e.g., metals), although the 
magnitude of such effects may be quite small. Strain rates of 103 s"1 or higher are generally 
treated as the range of high strain-rate response. It is within the high strain-rate range (1 03 s·1 

or higher) that inertia and wave-propagation effects become important in interpreting 
experimental data. At these high rates of strain, care must be taken to distinguish between 
average and local values of stress and that may be the result of one, or more, high-intensity 
stress wave propagating through the material. At strain rates of 105 s·1 or higher, we are 
generally dealing with "shock waves" propagating through the material. At these high rates, 
there exists a transition from nominally isothermal conditions to adiabatic conditions. 

In the mechanics of deformable media, we deal with physical events, e.g. 
deformation and flow, that occur and evolve, in both space and time, independent of any 
particular coordinate system that may be used to observe them. In a proper mathematical 
description, such events and their governing laws are expressed in terms of tensorial 
quantities. The invariance of tensors under coordinate transformation highlights a principal 
reason for employing tensor calculus in the study of the mechanics of deformable media. 
When transformation is carried out from one homogeneous (rectangular) coordinate system 
to another, the resulting tensors are identified as "Canesian tensors". However, in dealing 
with tensor transformation between general "curvilinear" coordinate systems, the 
pertaining tensorial quantities are referred to as "Curvilinear" or "General" tensors. In 
Chapter 1, the reader is introduced to Cartesian tensors. Curvilinear tensors, however, are 
considered in Appendix A (Volume 1). 

Two mechanical approaches are generally considered in the study of phenomena and 
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problems concerning the mechanics of deformable media, i.e., the "microstructuraf' approach 
and the "continuum mechanics' approach. 

In the "microstructural' approach, the macroscopic medium is considered to consist 
of a large number of structural elements. Such elements are assumed to be in continuous 
interaction with each other, and, hence their individual responses are seen to be mutually 
inter-dependent. The behavior of a statistical ensemble of such elements may be studied using, 
for instance, statistical or stochastic mechanics. 

Conventionally, however, the description of material behavior is based on "continuum 
mechanics" models that generally refer to homogeneous media. In the "continuum 
mechanicS' approach, the actual microstructure of the medium is disregarded and the medium 
is pictured as a "continuum" without gaps or empty spaces. Hence, the configuration of the 
assumed continuous medium would be described by a continuous mathematical model whose 
geometrical points are identified with material particles ofthe actual physical medium. The 
aim of Chapter 2 is to provide the reader with a concise introduction of the basic assumptions 
and principles of Continuum Mechanics with an emphasis on those specifically used in the 
remainder of the book. 

As mentioned earlier, engineering materials, when subjected to external loading, 
experience deformation and flow that evolve in space and time. Thus, in Chapter 3, we 
first consider the kinematics of involved deformation in the continuous material body and 
the determination of the pertaining strain by adopting a number of conventional measures. 
Second, we analyze the relationships between the sequential configurations that the parts of 
a "continuous" material body may acquire with the passage of time. Subsequently, in 
Chapter 4, we attempt to study the restrictions that classical thermodynamics impose on the 
theory of deformation of solids, and to seek information concerning the thermodynamics of 
continuous media. 

Different materials of the same geometry may respond differently under identical 
external effects. Such difference in response is often attributed to the inherent constitution 
of the material. Consequently, the response behaviour of a particular material, or of a 
class of such material, is described mathematically by so-called "constitutive relations". 
These constitutive equations define the response behaviour of idealized media within a 
specific range of external effects. Accordingly, they only approximate the response 
characteristics of real materials, within a specified domain of actual service conditions. 
Constitutive relations establish, under certain physical and thermodynamical restrictions, 
the connection between the stimuli acting on the material specimen and the evolution of 
the occurring response. Thus, Chapter 5 attempts to guide the reader throughout a transition 
between the general concepts and principles, which are presented in Chapters 1 to 4, and the 
task of establishing the response behaviour of engineering materials, as presented in Chapters 
6 to 15. In this, the elastic response behaviour of the material is dealt with first. 
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Elastic behaviour of an engineering material depends only upon the stress level in 
the material, meanwhile, it is not strain- or time-history dependent. Further, an elastic 
deformation process is described, from a thermodynamical point of view, as dealt with in 
Chapter 5, to be a reversible process. Thus, upon the removal of the load, a complete 
recovery to the undeformed configuration would take place. An elastic response of an 
engineering material is formulated within the realm of "classical elasticity". Such an elastic 
response could be linear or nonlinear pending on the form of the constitutive law that is 
used in its description. In this context, Chapter 6 deals first with the general nonlinear 
elastic behavior, then it introduces the required assumptions and postulates in order to reduce 
such response to the idealized case oflinear (perfect) elastic behavior. 

Two ways in which the behaviour of real solids deviates from a perfect elastic one: 

First, the stress-strain relationship may be nonlinear and may also depend on the 
loading path. Further, the pertaining stress-strain curve may show hysteresis loops. 
Thus, the resulting stress-strain relationships may not be "uni-valued'. 

Second, the stress-strain relationship may be time-dependent. Thus, phenomena such 
as creep and stress-relaxation could become of importance, in determining the 
mechanical response of the real solid. 

In general, "inelastic" solids show the above mentioned two types of deviation from 
a perfect (linear) elastic behavior. That is, the stress-strain relation is both time-dependent and 
nonlinear. Thus, inelastic deformation depends, in general, as dealt with in Chapter 7, on 
the stress level and both the strain- and time-history of the material. A transition to the 
important subject of creep and stress-relaxation of metallic systems is dealt with at the end 
of Chapter 7. 

With the recent advances in material science and the parallel extensive industrial 
demands on advanced industrial materials such as high polymers and polymeric base 
composite systems, the identification of the viscoelastic response of engineering materials has 
gained recently a strong momentum in the realms of industrial techniques and applications. 

High polymeric materials are organic substances of high molecular weight, the 
technical importance of which depends on their particular microstructure. This class of 
materials may include, for example, rubber in its various forms, synthetic rubber-like 
materials, commercial plastics, and natural and synthetic textile fibres. Other few examples 
of a viscoelastic material would include a wide range of inorganic polymeric systems such as 
silicones and glass resins, constituents of polymeric base systems, natural fibres such as wood 
and the by-products of such fibres as, for instance, paper and board, building materials such 
as concrete, and a large class of biomaterials, among others. These materials are "time
dependent' in response and possess a "time-memory". Attempts to characterize the behaviour 
of such materials under the action of external loading, consequently, gave rise to the science 
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of "rheology" within which the phenomena now labelled "viscoelasticity" is well defined and 
intended to convey mechanical behaviour combining response characteristics of both an 
elastic solid and a viscous fluid. A viscoelastic material is, thus, characterized by a certain 
level ofrigidity of an elastic solid body, but, at the same time, it flows and dissipates energy 
by frictional losses as a viscous fluid. Chapter 8 treats the subject of viscoelasticity of 
engineering materials in a quite comprehensive manner. The important subject of 
thermoviscoelasticity is also dealt with in Chapter 8. 

The significant importance of the subject of the dynamic response of engineering 
materials has, also, gained in recent years a strong momentum in a wide scope of engineering 
practice. Dynamic properties of materials appear to be receiving more attention at present as 
a result of such current applications as space structures, machine components, advanced 
aircraft, and nondestructive evaluation of engineering materials and structures. Familiar 
applications of the study of dynamic deformation of engineering materials may include, for 
instance, 

identification, modelling, and prediction of the response behaviour of different 
classes of engineering materials under the effect of rapidly changing loads. 
development of new materials that can perform favourably from a design point 
of view when subjected to dynamic loading. 
study of the dynamic response of engineering members and structures with the 
inclusion of the dynamic behaviour of the pertaining materials. 
identification of the response of materials during dynamic fabrication 
processes, e.g. metal forming operations under rapidly changing loads, 
explosive welding and compaction operations. 
development of nondestructive evaluation techniques that are based on 
dynamic-effect phenomena, e.g., acoustic emission, ultrasonics and acousto
ultrasonics. 
shock synthesis to produce new elements or compounds. 
study of crash worthiness. 
development of anti-collision shielding for space vehicles. 
traditional and novel armour and anti-armour concepts for military 
applications. 

In Chapter 9, we introduce the subject of the response of metallic materials to 
dynamic loading. In this, the distinction of higher rates from lower rates is made not on the 
basis oftime-dependence of the material behavior, as we dealt with, for instance, in Chapter 
8, but rather on the necessity of including inertia forces in the pertaining dynamic analysis. 

Chapter 10 deals with the subject of plastic instability and localization effects in 
engineering materials. In this context, a decrease in stiffness due to geometrical change 
and/or material softening caused by deformation is responsible for the occurrence of instability 
phenomena in engineering materials within the plastic range; i.e., beyond the yield point. 
Such phenomena manifest themselves in various ways; e.g., buckling, bulging, necking and 
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shear banding. Once such instabilities are started, they tend to persist and the stiffness of the 
specific cross-sectional area of the specimen decreases; therefore deformation intensifies 
locally and eventually leads to final collapse and/or failure. Because the occurrence of such 
instabilities is an important precursor to collapse or failure, computational prediction of the 
onset and of the augmentation of these instabilities is essential and indispensable in 
understanding the ultimate strength of engineering materials, and in predicting and improving, 
for instance, the formability of ductile solids. 

In rigid body dynamics, it is assumed that, when an external force is applied to any one 
point ofthe body, the resulting effect sets every other point of the body instantaneously in 
motion, and the applied force can be considered as producing a linear acceleration of the 
whole body, together with an angular acceleration about its center of gravity. In the theory 
of deformable media, however, the body is considered to be in equilibrium under the action 
of the external applied forces, and the occurring deformations are assumed to have reached 
their equilibrium static values. This assumption could be sufficiently accurate for problems 
in which the time between the application of the force and the setting up of effective 
equilibrium is short compared with the time in which the observation is made. Meanwhile, If 
the external force is applied for only a short period of time, or it is changing rapidly, the 
resulting effect must be considered from the point of view of "stress wave" motion. Thus, 
when a localized disturbance is applied suddenly into a medium, it will propagate to other 
parts of this medium. The local excitation is not detected at other positions of the medium 
instantaneously, as some time would be necessary for the disturbance to propagate from its 
source to other parts of the medium. This simple fact constitutes a general basis for the 
interesting subject of "wave propagation". In the particular case, when the suddenly applied 
disturbance is mechanical, e.g., an impact force, the resulting waves in the medium are due 
to mechanical stress effects and, thus, these waves are referred to as "mechanical stress 
waves", or simply "stress waves". 

The propagation of stress waves in solids can be divided into two categories, 
"elastic" and "inelastic". When loading conditions result in stresses below the yield point, 
solids behave elastically and obey Hook's Law, and consequently stress waves are "elastic". 
As the intensity of applied loading is increased, the response of the material is driven out of 
the elastic range to a possible inelastic behavior. The behavior here may involve large 
deformation, internal heat generation, and often failure of the solid through a variety of 
mechanisms. In this context, "plastic" waves can be propagated in a material, such as a 
metal, which exhibits the phenomenon of yielding, when stressed beyond its proportional 
limit. The subject of elastic wave propagation in engineering materials is dealt with in Chapter 
11. Meanwhile, in Chapter 12, we consider the plastic response of engineering materials 
under dynamic loading, whereby a rate-effect phenomenon might be occurring in the material 
and the inertia forces would be included in the equation of motion. 

Chapter 13 deals with the identification problem of the linear viscoelastic response 
behaviour of an engineering material using dynamic experimental measurements. In this 
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context, a linear viscoelastic material is considered as a dynamic system, whereby, a dynamic 
system identification method is developed for the determination of the relaxation or creep 
function of the material. 

In most of viscoelastic material components, the presence of mechanical dissipation 
can effectively change the nature of wave motion in them. In addition to the significant 
mechanical dissipation that can occur in viscoelastic materials, it is well-recognized that these 
materials are "dispersive". In view of the latter property, phase velocity of a wave 
propagating in a viscoelastic material will depend on wave frequency. More specifically, 
waves of high frequency will propagate in viscoelastic materials with a greater phase velocity 
than if these waves have a low frequency. Consequently, a mechanical disturbance would 
continually change in shape during its motion in a viscoelastic medium. Further, the 
attenuation of high frequency waves in viscoelastic materials is greater than that of waves of 
low frequency. In this context, Chapter 14 concerns itself with the phenomenon of wave 
propagation in a viscoelastic solid and the associated with boundary value problem. 

The current technology of the design and manufacturing of laminated and fibre
reinforced composites is faced with problems essentially related to the inherent nature of the 
mechanical response of the different constituents of the microstructure, the formation of 
interfaces between such constituents and the evolution of the associated deformation 
processes under loading. Optimal design of such material systems is becoming a very 
progressive and challenging domain in both applied mechanics and material science. Thus, the 
increasing use of such materials is inciting new developments to be made within the context 
of macro- and micro-mechanical constitutive modelling, applications of such materials under 
variable boundary conditions, experimental testing methods, computational methods of 
analysis, and optimization. A new dimension of optimal design is being realized by building 
new composite systems through direct tailoring of the microstructure, e.g., by judicious 
reinforcement and mixing (hybridization) of the constituents ofthe microstructure within a 
specific topological frame of reference and to satisfY the boundary conditions involved. In this 
context, theoretical and experimental studies ofthe dynamic stress-strain relations of hybrid 
composites have become significantly important. The increased interest in the subject matter 
has been motivated recently by the increasing number of engineering applications and, as well, 
by the contributions provided by such studies to a better understanding of the mechanisms of 
deformation of such material systems when subjected to a dynamic loading environment. In 
this, Chapter 15 reviews recent research efforts pertaining to the micromechanics of 
polymeric fibre-composite systems, in general, and the optimization of the microstructure in 
the case of short-fibre composite systems. 

Chapter 16 deals with the microstructural or microscopic effects on the response 
behaviour of structured material systems. In this, the material system is considered as a 
heterogenous medium of actual microstructural elements. These elements are seen to exhibit 
random geometric and physical characteristics. Due to the discrete nature of the 
microstructure , the pertaining deformation process and its space- and time-evolutions are 
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considered to be stochastic in character. Thus, the overall response behaviour of the material 
is formulated by the use of probabilistic concepts and statistical theory. An important feature 
of the presented analysis is the introduction of a so called "Material Operator' of the 
structured material system that contains in its argument the significant response characteristics 
of the microstructure. These concepts are, first, utilized to formulate the outlines of a 
stochastic micromechanical model for the deformation of a heterogenous elastoplastic system. 
Then, the presented approach is extended to include the analysis of probable internal damage 
mechanisms in this class of material. 

Engineering materials are used either for their inherent structural strength or for 
their functional properties. Often a feed back control loop is designed so that the 
mechanical response of the material is monitored and the environment that is causing such 
a response can be controlled. The evolution of a new kind of material termed "Intelligent", 
"Smart", or "Adaptive" witnesses a significant development in materials science whereby 
the referred-to smart material adapts itself to suit the environment rather than necessitating 
to control the same. In this context, development in the area of materials research aims at 
incorporating intelligence into engineering materials, enabling them to sense the external 
stimuli and alter their own properties to adapt to the changes in the environment. 
Chapter 17 presents "an overviewH of possible forms of intelligence that may be 
incorporated in these materials. Three basic mechanisms of intelligent materials, namely, 
the sensor, processor and actuator functions are described. Implementation of these in the 
microstructure of various materials, as well as associated algorithms and techniques are 
illustrated. Different models, control algorithms and analyses are reviewed and their 
potential applications in engineering materials are presented. 

Chapter I 8 deals with the design procedure of a computer-based expert system, in 
conjunction with a non-destructive quantitative examination technique, e.g., acousto
ultrasonics, for the identification of material response states. 

Acousto-ultrasonics (AU) is a relatively new quantitative non-destructive examination 
technique that combines aspects of conventional "Ultrasonic" and "Acoustic Emission" 
practices. It has been proven to be a suitable approach to quantify microstructural and 
morphological states of materials and the related mechanical properties. 

In the AU practice, the multi-interactions of the ultrasonic-wave with the material 
microstructure usually result in complicated waveforms that are quite difficult to analyse. A 
relatively new approach to the analysis of AU signals is the use of"Pattern-recognition and 
Classi.ftcationMethodologiei'. In this approach, acousto-ultrasonic waveforms are identified 
as belonging to a number of classes, where each class represents one of different states of the 
tested material-property. For this purpose, each waveform is mathematically treated as a 
multi-parametric entity, which is called a "pattern vector". Each component of such a pattern 
vector represents a value of a parameter, called ''feature", which is used for the identification 
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of the AU signal. In the pattern-recognition practice, a computer-based pattern-recognition 
system, labelled "Pattern-recognition Classifier", is designed on the basis of AU signals 
pertaining to known material states of a particular tested response or material property. Two 
case studies are being dealt with in Chapter 18, i.e., characterization of the stress-relaxation 
response of a class of polymeric system, and the identification of residual impact properties 
of such a system. 

Throughout the text, generalized tensorial notations are used. For simplification, 
however, the presentation has been limited, as much as possible, to Cartesian tensors. 
Appendix A (Volume I), however, introduces to the reader the basics of H Curvilinear or 
General tensors". This will prove to be particularly useful when reading Chapter 10. 
Appendix B (Volume I) presents the definition and a summary of the properties of both the 
delta and step functions. These functions are used frequently throughout the text. Meantime, 
the important subject of integral transformation is dealt with in Appendix C (Volume I). 
Appendix D (Volume II) deals with the definition and basic properties of z-transform. The 
latter is employed throughout Chapter 13. 

In the presentation, vectors and unindexed tensor quantities are indicated in general 
by bold. The author has used majuscules to identity the undeformed configuration or the 
original state of the material and minuscules to designate the corresponding deformed state. 
Equations, figures and tables are numbered within the chapter; for example, Fig. 2.1 identifies 
Fig. I of Chapter 2. 
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CHAPTER9 

TRANSITION TO THE DYNAMIC BEHAVIOUR 
OF ENGINEERING MATERIALS 

9.1. Introduction 

In this chapter, we introduce the subject of the response of metallic materials to 
dynamic loading. In this context, if we consider the term "dynamic" to be solely characterized 
as "time-dependent", then we are in fact, as Lindholm (1962, 1964 and 1978) pointed out, 
including the entire range of material performance. In other words, the commonly called 
"static" or "quasi-static" deformation, e.g., creep and relaxation, is, in effect, "dynamic" or 
"time-dependent'. The majority of us, however, may be more accustomed to thinking of 
dynamic loading as associated with high loading rates or high deformation rates, with the 
adjective "high" referring to rates above those achieved on a standard testing machine. In this, 
the distinction of higher rates from lower rates is often made, however, not on the basis of 
time-dependence of the material behaviour, but rather on the necessity of including inertia 
forces in the pertaining dynamic analysis. 

However, according to the laws of mechanics, see Chapter 2, the inertia forces are 
generally included in the equations of motion, not in the constitutive relations of the material. 
Further, one may often argue that the mechanisms which lead to time-dependency in the 
constitutive equations for plastically deforming metals are not significantly different, if they 
are not basically the same for low and high rates of loading, so that on the basis of the 
constitutive relations alone, the distinction between static and dynamic loading may not be 
easily made (e.g., Lindholm, 1962, 1964 and 1978). 

9.1.1. LOADING REGIMES 

Following Lindholm (1962, 1964 and 1978), and the presentation in the introduction 
to this book, the following loading regimes of engineering materials may be identified: 

Sub-static regime. The lowest strain rate regime is that generally associated with 
creep, where, as dealt with in Chapters 7 and 8, the specimen is deformed under 
constant load or stress and the strain vs. time or creep rate is recorded. The counter 
part of creep is the so-called "stress -relaxation" where the material specimen is 
instantaneously strained to a specific strain level, which is maintained constant for the 
entire duration of the experiment, and the stress vs. time or relaxation-rate is 
recorded. 

11 
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Static regime. The next regime is generally referred-to as static testing. The term 
"static" is emphasized as it refers, in general, to stationary or time-independent 
behavior. In this regime, the strain rate level should be maintained constant, and be 
identified in conjunction with the test results. Here, standard hydraulic, or preferably 
screw machines are used to apply the load. 

Dynamic regime. In this regime, inertia forces become important, and mechanical 
resonance in the machine and the specimen must be considered. High strain rates from 
approximately 50 s·1 to 1 0" s1 can be obtained with mechanical impact from a moving 
mass, or by explosively generated pulses. At very high or "hypervelocity" impact, the 
impacting projectile is usually accelerated by means of a light gas gun or explosive 
generator. The analysis of the impact results must include the propagation of elastic 
and plastic waves. At the highest impact velocities, "material compressibility" 
becomes dominant and shock waves are developed. In this range, strain is not the 
appropriate deformation indicator, but rather the time-dependent particle and wave 
velocities are measured. Thus, the response of the material is considered within the 
realm of wave propagation theory. In this chapter, we introduce some results 
pertaining to the behavior of various metallic materials to high strain-rate loading, 
meantime the subject of wave propagation in such materials are dealt with within the 
scope of elastic wave propagation in Chapter 11, and in the context of dynamic 
plasticity in Chapter 12. 

The mechanical response of metals under high rates ofloading may differ significantly, 
from the corresponding response within the static regime. In this context, one may refer to 
the early experiments by Hopkinson (1905) when he conducted a series of dynamic 
experiments on steel and concluded that the dynamic strength was at least twice as high as 
its low-strain-rate strength. In this context, significant increases in flow stress were reported 
(e.g., Clifton, 1979) as strain rates of the order of 10• s"1 are attained. Such significant rise in 
flow stress leads some researchers to believe that there might be indeed a "limiting strain
rate" at which the strength of the material might approach infinity. On the other hand, 
however, it is known that steels undergo a ductile-to-brittle transition when the strain rate is 
significantly increased. 

Kolsky (1960) devised a method for measuring the stress-strain behavior at very high 
rates of loading, without setting up stress waves in the material specimen. Applying his 
method, Kolsky used specimens in the form of thin circular disks which were placed between 
two steel bars of the same diameter as the discs along which stress pulses were propagated. 
With this arrangement, the inertia of the specimen and plastic wave propagation in it could 
be neglected, and since the wave propagation in the steel bars was elastic and amenable to 
calculation, the stress-strain relation of the specimen could be determined; see, also, Davies 
and Hunter (1963) and Kolsky (1965). An apparatus was subsequently developed by Kolsky 
and Douch (I 962) to carry out such measurements. In this method, short cylindrical metal 
rods were fired from an air gun to impinge axially on a steel bar of the same diameter as the 
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rods. The stress was measured by observing the amplitude of the elastic wave propagated in 
the steel bar. Meanwhile, the plastic strains were measured by examining the specimens after 
impact. By using a series of specimens fired over a range of velocities, dynamic stress-strain 
curves were obtained. The "Kolsky bar' often referred-to as the "Split Hopkinson Pressure 
Bar' is shown schematically in Figure 9 .1. 

SUSPENSIONS 

EXPLOSIVE 

HEATING SPECIMEN CONDENSER MICROMETER HEAD 

WIRE --~~----~------------------------~--_Jir-~~--~ 
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RAY 
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Figure 9.1. The "Kolsky bar''. (Source: Kolsky, H. ( 1960) Viscoelastic 
waves, in Int. Symp. on Stress Wave Propagation in Materials, Ed. N. 
Davids, lnterscience Publishers, London, pp. 59-90. Reprinted with 
permission). 

Figure 9.2 is due to Kolsky (1965). It shows a comparison between the "dynamic" 
stress-strain curve for annealed bars of aluminum [better than 99.5 per cent pure] obtained 
according to the above described method, and the "static" stress-strain curve for similar bars 
measured on a conventional testing machine. It is seen from the figure that there is a definite 
strain-rate effect. Meanwhile, Figure 9.3 shows a correlation between the velocity of impact 
and the magnitude of the permanent strain in the material. 

As we discussed in Chapter 7, materials such as metals exhibit, in general, nonlinear 
stress-strain relations and plastic yielding, and the stress-strain curve for unloading is generally 
different from that for loading (see, also, Chapter 1 2). When the strain rate increases, the 
deformation process changes gradually from fully isothermal to fully adiabatic, as there is not 
enough time for the heat generated during the deformation process to escape out of the body. 
This gives rise, in some cases, to adiabatic shear instabilities that have a profound effect on 
the mechanical response of the material. This phenomenon is discussed in the following 
chapter (Chapter 1 0) within the scope of plastic instability and localization effects. 
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Figure 9. 2. Dynamic and static stress-strain cwves for annealed 
aluminum. Reprinted from "Kolsky, H., The propagation of mechanical 
pulses in anelastic solids, in: Behaviour of Materials under Dynamic 
Loading, edited by N. J. Huffington, Jr., The American Society of 
Mechanical Engineers, New York, 1965, 1-18", with kind permission of 
The American Society of Mechanical Engineers. 
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Figure 9.3. Variation of strain with impact velocity for aluminum. 
Reprinted from "Kolsky, H., The propagation of mechanical pulses in 
anelastic solids, in: Behaviour of Materials under Dynamic Loading, 
edited by N. J. Huffington, Jr., The American Society of Mechanical 
Engineers, New York, 1965, 1-18", with kind permission of The 
American Society of Mechanical Engineers. 
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The rate dependency of the mechanical behavior of materials in general is a key factor 
in understanding the fundamental mechanisms involved in the deformation process (Campbell, 
1968). According to Campbell ( 1968), the realization of this fact for the cases of metals and 
non-metals was delayed for two reasons: First, many common alloys are relatively rate
insensitive at normal rates of strain, so that it is necessary to use experimental techniques 
capable of measuring accurately small increments of stress and strain over a very wide range 
of strain rate. Second, the fundamental processes of plastic flow in metals could not be 
investigated thoroughly until adequate techniques were developed for observing dislocations 
and their properties. In this context, the possibility of direct measurement of dislocation 
velocities was a major step towards the goal of relating macroscopically observable quantities, 
e.g., stress, strain and strain-rate, to basic microstructural deformation mechanisms in metals, 
such as dislocations and other microstructural rate-controlling processes. 

9.2. Response Behaviour of Metals under Dynamic Loading 

9.2.1. STRAIN-RATE SENSITIVITY I STRAIN-RATE HISTORY 

Some metals, e.g., aluminum (FCC) and copper (FCC), may show sensitivity to both 
strain-rate and strain-rate history. Other metals may show sensitivity to strain-rate only, e. g., 
steels (BCC) and titanium (HCP). 

9.2.2. THE JUMP TEST "INCREMENTAL STRAIN-RATE TEST" 

A well-known experiment to study the history effects in metals is the so-called "jump test", 
often referred-to as the "incremental strain-rate test". The main objective of performing the 
referred-to jump tests is to obtain information concerning the dynamic response of the 
material that may be used in the development of the pertaining constitutive equations. 

A jump test is effected by combining two types of loading: a quasi-static loading is 
applied first and, without unloading, it is followed by a dynamic loading. Typical of the 
apparatus used to perform a jump test is the stored-torque "Split Hopkinson Bar"; e.g., 
Campbell et al. 1977 and Duffy, 1979. In this experimental set-up, the specimen is a thin
walled tube placed near the center of the bar and loaded in torsion. Quasi-static loading is first 
applied by, e.g., an electric motor at one end of the specimen, which turns the bar against a 
clamping mechanism. Dynamic loading is then applied from the other end by the sudden 
release of a stored torque. In Campbell's apparatus (Campbell et al., 1977), the clamp is the 
crucial part of the apparatus; its release is effected by the fracture of a brittle bolt. The 
referred-to clamp must meet two requirements: First, it must provide as short time as possible 
between first arrival of the pulse and the establishment of a constant strain rate. In referred-to 
Campbell's bar, this rise-time is 25 or 30 !J.S which corresponds to about 1.5% strain 
accumulation in the specimen before a constant strain-rate of 103 s-1 is attained. Second, the 
pulse must be pure torsional, i.e., not be accompanied by pulses in other directions, e. g., an 
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axial pulse or a bending pulse. This functional requirement of the apparatus can be 
incorporated in the design ofthe clamp itself(Duffy, 1979). 

Figure 9.4 shows schematically an example of the stress-strain curve (Senseny, Duffy 
and Hawley, 1978) which was obtained during a jump test. The lowest curve in the Figure is 
for loading at a constant low strain rate, Yi, e.g., of the order of 104 or 10-3 s-1. The highest 
curve was obtained at a constant high strain rate, y r , e.g. 103 s-1 During a jump test, the 
stress-strain curve follows the path ABCD. As shown in the figure, at point B, the strain rate 
changes abruptly from Yi toy,, with a resulting increase in stress of Ll-r, 

For many purposes, the "strain-rate sensitivity" of a material is evaluated by 
comparing values along constant strain rate curves, e.g., the curves corresponding to constant 
strain rates Yi and y, in Fig.9.4. However, a comparison of conditions at points C and F 
shows that the strain and strain rate remain the same at theses points, while the stress is 
different. Thus, one may consider the possibility that the behaviour of the material may 
depend on some other factor, one involving, say the "deformation history". Hence, with 
reference to Fig. 9.4, Ll-rh is often viewed as a measure of the "deformation history" 
dependency, while Ll-r, is considered to be related to the "true strain rate sensitivity". 

Figures 9.5 and 9.6 show the results, due to Lindholm (1964), for cyclic loading of 
aluminum (FCC). In this context, Figure 9.5 shows the true stress vs. the true strain from 
cyclic static-dynamic-static loading, while Figure 9.6 demonstrates the corresponding results 
in the case of cyclic dynamic-static-dynamic loading. It is evident, from Figure 9.5, that the 
stress in a dynamic test following static pre-loading is not equal to the stress found at the 
same strain in all-dynamic loading (the dotted line). This difference is apparently due to 
"strain rate history" (Duffy, 1979). 

Bodner and Partoum (1975) and Bodner and Merzer (1978) define an "internal 
variable", based ultimately on a relation between dislocation velocity and stress. With this 
internal variable, these researchers evaluate the parameters in their constitutive equations from 
the results of tests carried out, using jump tests, at constant strain rates. The results from the 
jump tests are then used further to establish the validity of their constitutive equations 
Reference, in this context, is made Klepaczko (1968, 1975), Campbell et a!. (1978) and 
Ponter (1978). 

Does the strain-rate history effect is influenced by the "dwell time"? 
For aluminum (FCC), for instance, Lindholm ( 1964) considered the effect of dwell 
time at zero load. In this context, Lindholm loaded a specimen dynamically at 8% 
strain, unloaded, and then reloaded dynamically. In this context, the results of Fig. 9. 7 
show a "history ejjecf' for a dwell-time of three minutes and greater, while for a 
dwell-time of 450 JlS none is observed. 
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effects during plastic deformation of close-packed metals, J. Appl. Mech. 
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For steels (BCC), jump tests were performed by Barraclough and Sellars (1974), 
Both stainless steel and low alloy steel were considered. Rods of the material were 
loaded in torsion at a temperature of about 1000 oc. Their results indicate that steel 
is strongly influenced by strain rate (at least at this temperature). On the other hand, 
steel appeared almost insensitive to strain-rate history, as far as the jump test is 
concerned. Jump tests to higher strain rates were performed by Wilson eta/ ( 1979). 
Again the results show a strong strain rate sensitivity, but an insensitivity to strain rate 
history (see Duffy, 1979). 

A peculiar aspect of the behavior of steels was also noticed by examining the results 
ofEleiche and Campbell (1976a) and pointed out by Duffy (1979). In this, it was shown that 
all high strain curves reach a maximum and then turn down. The latter effect was suspected 
by Duffy (1979) to be due to a material instability effect; see, e.g., Costin et al (1979). In 
general, it appeared that steel (BBC) is not as sensitive to strain rate history effects as are 
FCC metals, but that strain rate effects are high. 

Within the strain rate range of 10-4 to 1 cY s1, constant and incremental strain rate tests 
were performed by Tanaka and Nojima (1979) on 0.02% and 0.45% C. steels: 1) A 0.02% 
C. steel (0.02% C; 0.01% Si; 0.31% Mn; 0.008% P; 0.012% S; balance is Fe), and 2) A 
0.45% C steel (0.45% C; 0.24% Si; 0.64% Mn; 0.002% P; 0.13% S; balance. Fe). In this 
context, after machining, the material specimens (5 mm in diameter, and 5 mm in length) were 
annealed for 1 hr. at 800°C and cooled in a vacuum furnace. 
A split Hopkinson pressure bar apparatus and an Instron testing machine were used for the 
high strain rate (102 to 1 cY s-1) and low strain rates (W4 to W 2 s-1) tests, respectively. In the 
incremental strain rate tests, a stepped striker bar was used in the Hopkinson bar apparatus. 
In the tests in which deformation was rapidly stopped at high strain rates, a device (a stopper) 
was installed between the input and output bars in the apparatus (see Tanaka and Nojime, 
1979). 
Constant strain rate tests were performed at plastic strain rates of EP = 1 o-4 to 103 s-1, and 
temperatures of 78 to 290 "K. The relations between flow stress a and the plastic strain rate 
(log EP), at the plastic strain EP = 5% are shown in Figures 9.8 a&b for 0.02%C and 0.45% 
C steels, respectively. As shown in these figures, the stresses are considerably affected by the 
plastic strain rate, especially at high temperatures. 
Incremental strain rate change tests were performed by Tanaka and Nojima (1979) at both 
high and low strain rates, and the values of the strain rate sensitivity of the stress as defined 
by equation (9 .1) below were determined. 

Strain rate sensitivity of the stress: (9.1) 
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Figure 9.8. Flow stress a- plastic strain rate eP relations. (a) 0.02% C. Steel; (b) 0.45% C. 
steel. From: Tanaka, K. and Nojima, T. (1979) Dynamic and static strength of steels, In: 
Mechanical Properties at High Rates of Strain, Proceedings of the Second Conference on 
the Mechanical Properties of Materials at High Rates of Strain, J. Harding (editor), 
Oxford, 28-30, 1979, The Institute of Physics, Conference Series Number 47, pp. 166-73. 
Reprinted with kind permission of the Institute of Physics. 

The obtained values of h, are shown in Figures 9.9 a&b. Values of the strain rate sensitivity, 
1<. = o I log~, were also determined from the slopes of the a -log €P relations which were 
obtained from constant strain rate tests. In both types of steel, it was found by the authors that 
the values of h, are larger than those of 1<. especially at low strain rates. 

More typical of the behavior of copper (FCC) are the results of Klepaczko et al 
(1977). These results were obtained by means of a torsional "Kolsky bar", Fig. 9.10, in which 
the pulse is initiated explosively rather than by means of a stored torque. This technique (for 
explosive loading) was developed by Duffy et al (1971). The technique has the advantage of 
producing a pulse with a much shorter rise-time (8 flS ), but of shorter duration (about 100 
flS). An extensive series of jump tests were performed with this bar by Senseny et al (1978) 
whereby four metals were tested; namely, aluminum (FCC), copper (FCC), magnesium 
(HCP) and zinc (HCP). The results are shown in Fig. 9.11. 
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steel). From: Tanaka, K. and Nojima, T. (1979) Dynamic and static strength of steels, In: 
Mechanical Properties at High Rates of Strain, Proceedings of the Second Conference on 
the Mechanical Properties of Materials at High Rates of Strain, J. Harding (editor), 
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Reprinted with kind permission of the Institute of Physics. 

Extensive series of jump tests was performed by Eleiche and Campbell (1976a) and 
Campbell eta!. (1977), whereby copper (FCC), titanium (HCP) and mild steel (BCC) were 
tested. The tests were performed over a range of temperatures and to up to 60% of shear 
strain. The results of these tests confirmed that copper is sensitive to strain rate history, while 
titanium and mild steel are less sensitive to strain-rate history, but more sensitive to direct 
effects of strain rate. Stelly and Dormeval (1978) performed experiments ofthe cyclic type, 
involving complete unloading before reloading at a new strain rate, with specimens of copper 
(FCC). In these tests, loading was in compression, using a Kolsky bar. 

Other strain rate histories can be imposed besides that characterizing the jump test. 
Eleiche and Campbell (1976b), for instance, performed tests, on a moderately sensitive 
magnesium alloy, in which the strain rate is reversed in sign while being changed in magnitude 
from 103 to 10-3 s-1; Figures 9.12 to 9.14. 
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Figure 9.1 0. Schematic of the explosively loaded "Kolsky bar" for incremental testing. 
From: Senseny, P. E., DullY, J. and Hawley, R. H. (1978) Experiments on strain rate history 
and temperature effects during plastic deformation of close-packed metals, J. Appl. Mech. 

45, March 1978, 60-6. Reprinted with permission from ASME International. 
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Figure 9.12. Schematic showing stress-plastic strain path, BGh, during reverse-shear 
testing. Material: Moderately rate-sensitive magnesium alloy. From: Eleiche, M. A. and 
Campbell, J.D. (1976b) Strain-rate effects during reverse torsional shear, Experimental 
Mechanics 16 (8), 281-290. Reprinted with kind permission ofthe Society for Experimental 
Mechanics. 
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Campbell, J.D. (1976b) Strain-rate effects during reverse torsional shear, 
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The work described above refers entirely to polycrystalline metals. Recently, some 
progress has been made within the domain of establishing the history effects during the 
deformation of single crystals in the dynamic range of strain rates. Chiem and Duffy (1979), 
for instance, carried out jump tests in shear with single crystals of LiF. Their tests were 
performed on small cuboid specimens, four of which were mounted symmetrically in a 
torsional Kolsky bar. 

Summary 
The FCC metals, e.g. aluminum and copper, are not strongly sensitive to strain rate. 
However, history effects appear to be important. 
Steel (BCC) and titanium (HCP), on the other hand, show a greater strain rate 
sensitivity but only a small history effect. 
For the HCP metals, in general, e.g., magnesium and zinc, it appears that insufficient 
data are available. 
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Some results obtained by Lindholm (1965), using the split Hopkinson pressure bar are 
presented in Figures 9.15, 9.16 and 9.17 for three commercially pure, annealed, face centered 
cubic metals: copper, aluminum and lead, respectively, and in Figure 9.18 for iron. In these 
figures, stress and strain are the true or instantaneous values. In Fig. 9 .18, the negative slope 
of the stress vs. strain rate curve at the higher strains is generally associated with "strain 
ageing'. Strain ageing occurs by diffusion of interstitials, e.g., carbon and nitrogen, into the 
active dislocation sites. The stress required to maintain flow is dependent upon the number 
of dislocations which are either free or bound by this atmosphere and, thus, on the effective 
interstitial diffusion rates, the temperature and deformation rate during the test (Lindholm, 
1965). 
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Figure 9.18. Flow stress as a function of strain rate for iron. Reprinted 
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.P ~ 

to' 

29 

to• 

9.2.3. DYNAMIC BIAXIAL LOADING 

Figure 9.19 is due to Lindholm (1965). It shows a plot of stress and strain as functions 
of time in the case ofbiaxialloading of mild steel. In this figure, o and "t are the tensile and 
shear stresses, respectively, and e and y are the corresponding tensile and shear strains. For 
this record, as discussed by Lindholm (1965), yield occurred about 6 milliseconds after initial 
application of the load. There is strong instability in torsion, whereas yield is hardly noticeable 
on the tensile stress trace. This may be due to both the material instability in mild steel, 
associated with the upper and lower yield stresses, and the region of zero work hardening 
during the lower yield point elongation. While the strain increments remain roughly 
proportional, the stress increment vector assumes a direction tangent to the yield surface and 
therefore normal to the strain increment vector during the period of zero work hardening. 

Fig. 9.20 (Lindholm, 1965) demonstrates the results from 20 tests on mild steel at 
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varying loading rates and stress ratios; from pure tension to pure torsion. The two curves 
correspond to two different measures of stress. The abscissa is the square root of the second 
invariant ofthe elastic strain tensor. This measure ofthe strain rate is nearly proportional to 
the reciprocal of the time to yield or delay time. For the lower curve, ofFig. 9.20, correlation 
is made with the square root of the second invariant of the deviatoric stress tensor, which is 
equivalent to a distortion energy or octahedral shearing stress criteria. For this curve, there 
appears a tendency for the tensile stress points to be consistently high (Linholm, 1965). 
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Figure 9.19. Typical dynamic record for combined loading of mild steel. 
Reprinted from "Lindholm, U. S., Dynamic deformation of metals, in: 
Behavior of Materials under Dynamic Loading, edited by N. J. 
Huffington, Jr., The American Society of Mechanical Engineers, New 
York, 1965, 42-61", with kind permission ofThe American Society of 
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9.3. Metallurgical Effects 

9.3.1. STRAIN-RATE EFFECTS 
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A large number of investigations, carried out in the last four decade, or about, in the area 

of dynamic behavior of materials, have shown that effects due to high strain-rate could be 

quite significant, e.g., the flow stress and the ductility of materials, the deformation and 

fracture mechanisms are often quite different from those exhibited under static or quasi-static 

loading. At very high strains and strain rates, there can be abrupt changes in deformation 

mode leading to noticeably different microstructures. These lead to noticeable metallurgical 

effects, e.g., microstructurally related flow stress, ductility, hardness and other related 
mechanical property changes. 
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Deformation induced metallurgical effects are now generally well documented to be the 
result of stress or strain-induced microstructures, or microstructural changes in crystalline 
(polycrystalline) metals and alloys. In many cases, strain hardening, work hardening, or other 
controlling deformation mechanisms can be described by the generation, movement and 
interactions of dislocations. These dislocations can prSduce drag or a range of impedances, 
including obstacles to further motion. 

While dislocations may be involved in a range of metallurgical effects which are evident 
in the response behavior of metals and alloys, there are of course the controlling effects of 
temperature, strain, strain-rate and the associated mechanical state. 

Metallurgical effects, characterized mainly by the relationships between deformation 
induced microstructures and residual mechanical properties, are therefore the result of the 
complex interrelations between stress, stress state, strain, strain rate and temperature. 

For instance, changes in plastic stress in a uniaxial tensile stress state may be expressed 
by the following expression (Murr, 1987): 

( do ) [ do ) · ( do ) do = - de + -. de + - d T 
de £ T de dT , £ 

· e, T • 
(9.2) 

where o, e, f: and Tare the stress, strain, strain rate, and absolute temperature, respectively. 

The above expression indicates that even if the loading or deformation parameters are 
controlled externally to the deforming material, there can be functional relationships which 
could override that control. For instance, temperature in a deforming material can be raised 
by increasing the strain, and by adiabatic heating at high strain rates. In addition, very high 
pressures in the shock loading regime can create both transient and residual heating. 

Figure 9.21 is due to Murr (1987). It illustrates a range of microstructures which 
include planar dislocation arrays at relatively low levels of strain which evolve into more 
dense and microstructurally different arrays at higher strain levels. These different arrays 
(microstructures) are composed of twin-faults and martensite, whereby the martensite forms 
at the intersections of twin-fault bundles. 

The dislocation density changes may be related to changes in stress (or strain) through 
expressions ofthe form (Murr, 1987): 

(9.3) 

p =Po+ Ae 
(9.4) 
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where a is the flow stress, p is the current dislocation density (p0 is the initial dislocation 
density) and a a. K and A are constants. In the context of flow stress or residual yield stress 
(at constant strain), Eqn. (9.3) also expresses the fact that the residual yield or flow stress will 
be increased by the creation of dislocations. Since hardness and yield stress are inter-related, 
the former is also expected to increase by the creation of such dislocations (Murr, I987). 

9.3 .2. SHOCK LOADING AND RESULTING SHOCK WAVES 

In describing the metallurgical effects of shock and/or high strain-rate loading, one may 
consider the effects of such loading on the evolution of the microstructure. 

Shock Waves 
Shock loading represents a regime at the extreme end of the high-strain rate deformation 
range ( ~ I 06 to I 07 s1 ) as opposed to tensile or compression loading at strain rates of ~ I 0"4 

s-1). The pulse duration is very short, usually never exceeding IO J..LS. Peak pressure is the 
dominant shock loading parameter in residual microstructure production where strain is small 
or negligible. 

Shock waves are characterized by an abrupt pressure front and a state of uniaxial 
strain. This characterization includes a hydrostatic component of stress which, when greater 
by several factors than the dynamic flow stress in the material, allows for the assumption that 
the solid has no shear resistance (G = 0), i.e., a "hydrodynamic" behavior (e.g., 
Eichelberger, I965) 

In reality, however, this pressure front may not be abrupt. Thus, a shock wave 
propagating into or through a material might be illustrated in the context of time and pressure 
as shown schematically on Fig. 9.22 (Murr, I987). 

As shown in Fig. 9.22, the shock front is shown as a region where the material is 
subjected to increasing pressure (stress) up to the peak shock pressure (P). The time of 
application ofP (the peak shock pressure) is referred to as the "shock pulse duration", ~t. 
As the pressure of the wave declines or is attenuated, the shock wave is called a "rarefaction 
wave" or "wave portion". 

Both the peak shock pressure and its duration can be expected to have some effect on 
the shock dynamic behavior and the residual properties of the material. This is due to the fact 
that the disturbance created within the shock front and the dynamic behavior of the material 
will be altered by these two parameters. Fig. 9.23 shows examples of shock-induced 
microstructures in face-centered cubic metals having a range of stacking fault free energies 
(e.g., Murr and Meyers, I983 and Murr, I987). 
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Figure 9. 21. Examples of residual microstructures in type 304 stainless steel after deformation 
in uniaxial tension to an average total strain e as indicated (room temperature; e=l0'3 s·1) . The 
microstructures are characterized by increasing densities of dislocation arrays, stacking faults 
and twin faults, with a ' -martensite forming at twin-fault intersections and constituting a 
prominent volume fraction nearly equivalent, as a volume fraction percent, to the total strain 
value from about 25% strain "Reprinted from Murr, L. E., Metallurgical Effects of Shock and 
High-Strain-Rate Loading, in Blazynski, T. Z. (editor), Materials at High Strain Rates ( 1987), 
1-46, with kind permission from Chapman & Hall" . 
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Figure 9.22. Idealized (schematic) view of a shock pulse traveling through 
a solid material. The z-direction is assumed to be normal to the plane shock 
wave front and to the specimen surface "Reprinted from Murr, L. E., 
Metallurgical Effects of Shock and High-Strain-Rate Loading, in: Blazynski, 
T. Z. (editor), Materials at High Strain Rates (1987), l-46, with kind 
permission from Chapman & Hall". 

9.3.3. SHOCK-INDUCED MICROSTRUCTURE AND MECHANICAL PROPERTY 
CHANGES 
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The peak pressure of the shock wave characterizes the shock front. This, by 
consequence, influences the stress-induced generation of dislocations and other defects in 
metals and alloys. In view of the very high strain rates involved in shock loading, the peak 
pressure may result in some of the following unique deformation phenomena: 

Pressures (shock stresses) of two orders of magnitude greater than the yield or flow 
stress of metals and alloys are common, and, in most controlled plane wave shock 
loading, strains are minimal ( <5%). But because the rapid movement of the shock 
wave, dislocations interact within the shock front forming jogs which favor high 
vacancy production (Kresse! and Brown, 1967, and Murr, Ina! and Morales, 1967). In 
many shock-loaded metals and alloys, vacancies and vacancy clusters can contribute to 
residual metallurgical effects such as hardness, ductility and thermal recovery. 

At very high pressures, the heating associated with the high-pressure state (within the 
shock front) can become very significant, and dislocations or other defects created by 
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the propagating shock front can be partially or completely annihilated. Residual heating 
after shock front may also create recovery, recrystallization and related microstructure 
which may be characterized, for instance, by short twin segments, sub-grains, etc .. 

Some of the above mentioned features are illustrated in Fig. 9.24, which shows residual 
hardness reduction as a result of shock-thermal recovery in nickel and type 304 
stainless steel at plane shock pressures above about 60 Gpa. 

Figure 9.23. Examples of shock-induced microstructures in face-centered cubic metals having 
a range of stacking fault free energies. (a) Ni (15 GPa); (b) Cu (15 Gpa); (c) Fe-34% Ni (10 
Gpa); (d) Ni Cr (8 Gpa); (e) lnconel600 (8GPa); (f) 304 stainless steel (15 Gpa). "Reprinted 
from Murr, L. E., Metallurgical Effects of Shock and High-Strain-Rate Loading, in: Blazynski, 
T. Z. (editor), Materials at High Strain Rates (1987), 1-46, with kind permission from 
Chapman & Hall"; After Murr and Meyers (1983). 
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Figure 9.24. Thennal effects and thermal recovery associated with the high 

pressure state in shock-loaded metals and alloys. "Reprinted from Murr, L. 
E., Metallurgical Effects of Shock and High-Strain-Rate Loading, in: 
Blazynski, T. Z. (editor), Materials at High Strain Rates (1987), 1-46, with 
kind permission from Chapman & Hall". Graphs after Murr (198la). 
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During the production of dislocations (and other defects) in the shock front, heating 
occurs. The latter, combined with the actual defect production, contributes to an 
internal energy change across the shock front. On the basis of the work done on a solid 
during rarefaction (stored energy calculations), Murr (1987) advanced (see, also, Murr 
and Meyers, 1983) the following expression for the residual yield or flow stress of a 
metal or alloy subjected to a 'planar' shock: 

(o- o0 ) = 2a G I b I {f(P)}112 (9.5) 



www.manaraa.com

38 

Where 0 0 and a are constants for any particular material, G is the shear modulus, b 
is Burgers vector and P is the peak shock pressure. 
In the above expression (9.5), it is readily apparent that the left hand side of this 
expression is dependent on the changes in residual mechanical properties of the material 
under consideration, e.g., yield strength, ultimate tensile strength, hardness, following 
the passage of a shock wave. These changes will be shock-pressure dependent. As 
mentioned earlier, such dependence is the result of shock-wave-induced defects, for 
instance, dislocations as illustrated schematically in Fig. 9.24. 

As the peak pressure, in the plane-wave compressive shock loading, is increased, the 
dislocation density increases and as a consequence in high-stacking-fault free energy 
materials (such as nickel) the dislocation cell size (or cell center spacing) decreases. In 
low-stacking-fault free energy materials where twin -faults form, the density or volume 
fraction of twin-faults will increase. If the twin-fault bundle thickness does not change 
much, the consequence of this increased volume fraction is a corresponding decrease 
in the twin-fault spacing. These parametric changes with peak shock pressure, at 
constant shock pulse duration, are illustrated in the experimental data graphs in Fig. 
9.24 (Murr, 1987). It is particularly important to observe in this figure that: 

- The residual hardness is functionally related to the square root of the peak 
pressure, for a great variety of shock loaded metals and alloys. 

- The two obvious deviations in the slopes of the straight lines occur for metals 
dispersed with fine particles of theria (Th02), or theria dispersed particles. The 
theria dispersion not only hardens the material, but also locks up dislocations 
created by the shock front. This feature is apparent on comparing the annealing 
responses for NiCr (chrome! A) and Theria dispersed-NiCr, Fig. 9.25 The latter 
figure attests not only to the hardness difference for dispersion-hardened metals 
shown in Fig. 9 .26, but also to the unique locking ability of dispersed particles 
in shock-loaded materials: While dislocations can be created by the shock front 
passage in spite of the presence of the dispersed particles, the particles could 
effectively prevent the dislocations created by the shock front from annealing out, 
thereby maintaining the shock-induced high hardness to very high temperatures. 

- A summary review of the effects of peak shock pressure for plane-wave, 
shock-loaded polycrystalline metals and alloys is shown in Figure 9.26 and, also, 
as a microstructure-property map in Fig. 9.27. Both figures are due to Murr 
(1987). 

9 34. TWINNING IN SHOCK-LOADED METALS AND ALLOYS 

One of the unique metallurgical effects of planar shock loading is the occurrence of 
twins in crystalline metals and alloys at some critical pressure. This is especially unique 
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because some metals such as nickel and molybdenum do not normally twin when subjected 
to other modes of loading. 

In FCC-metals and alloys, twining is expected to occur initially in (001) orientations. 
Twinning also occurs preferentially in low-stacking fault free energy metals and alloys as the 
preponderance of stacking faults provides opportunities for thin twins to form. This process 
is, however, irregular, leading to the formation of bundles of intermixed stacking faults 
(intrinsic, extrinsic and other irregular faults) and thin twins, often referred to as "twin faults" . 
Thus, the critical pressure at which twinning occurs in FCC- metals and alloys appears to be 
dependent on stacking fault free energy. This is illustrated in Fig. 9.28 (due to Murr, 1987). 

Figure 9.25. Comparison of hardness and hardness recovery in shock-loaded Ni60 Cr20 and 
TD-NiCr (the same alloy with 2 vol% Th02 included as a dispersed phase) for a constant 
annealing time of I h. The corresponding unshocked microstructures are also shown for 
comparison. "Reprinted from Murr, L. E., Metallurgical Effects of Shock and High-Strain-Rate 
Loading, in: Blazynski, T. Z. (editor), Materials at High Strain Rates ( 1987), 1-46, with kind 
permission from Chapman & Hall". Graphs after Murr (198la). 

Twinning in aluminum (where the stacking fault free energy is approximately 160 
mJ/m2), while estimated from Fig. 9.28 to occur at about 40 Gpa, should not likely to occur 
because of the low melting point for aluminum (660 oq and the shock heating which would 
occur at that pressure (Fig. 9.27) leading to complete recovery (annealing) at pressures below 
the critical twinning pressure. This has yet to be demonstrated experimentally (Murr, 1987) 
The data in Fig. 9.28 correspond generally to ambient temperatures or above (Fig. 9.27) and 
very low (or zero) strain. Consequently, changing the shock temperature or altering the strain 
should have a significant effect on the critical twinning conditions implicit in Fig. 9.28. 
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In low-stacking fault free energy alloys such as brass and stainless steel, planar 
dislocation arrays and stacking faults at very low peak shock pressures (<10 GPA) lead to 
increasing densities of twin-faults at increasing pressures above the critical twinning pressures 
( 10-20 GP A). In high-stacking fault free energy metals, such as nickel and copper, dislocation 
cells density with increasing peak shock pressure, resulting in a reduction in the average 
dislocation cell size d and a saturation of cell size at the critical twinning pressure. Twins and 
twin-faults develop with increasing density and in orientations other than (001) above the 
critical twinning pressure. There is, therefore, a microstructural transition in metals like 
copper and nickel, e.g., dislocation cells decreasing in size up to the critical twinning pressure 
where twins and twin-faults increasing in density occurs. These features are illustrated in 
Fig. 9.29 (due to Murr, 1987). 
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Figure 9.26. Parametric variations (metallurgical effects and variations of residual mechanical 
properties) in shock-loaded metals and alloys "Reprinted from Murr, L. E., Metallurgical 
Effects of Shock and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor), Materials at High 
Strain Rates (1987), 1-46, with kind permission from Chapman & Hall". 
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Figure 9.27. Microstructure-property hypennap for crystalline shock-loaded metals and alloys. 
Arrows indicate parametric increase (T) or decrease (l) "Reprinted from Murr, L. E., 
Metallurgical Effects of Shock and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor), 
Materials at High Strain Rates (1987), 1-46, with kind permission from Chapman & Hall". 
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Figure 9.28. Critical twinning pressure versus stacking-fault free energy for a number of fcc 
metals and alloys. (Critical pressure values are estimated from shock-loading data of Murr 
(1981); stacking-fault free energy values are from Murr (1975)) "Reprinted from Murr, L. E., 
Metallurgical Effects of Shock and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor), 
Materials at High Strain Rates ( 1987), 1-46, with kind permission from Chapman & Hall". 
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Figure 9.29. A comparison of dislocation cell size changes and twin-fault spacing changes for 
shock-loaded and cold-rolled metals and alloys "Reprinted from Murr, L. E., Metallurgical 
Effects of Shock and High-Strain-Rate Loading, in: Blazynski, T. Z. (editor), Materials at High 
Strain Rates (1987), 1-46, with kind permission from Chapman & Hall". 

9.3.5. METALLURGICAL EFFECTS OF SHOCK PULSE DURATION 

The pulse duration in shock loading serves to equilibrate defects generated in the shock 
front by maintaining the applied peak pressure for some interval of time. As mentioned earlier, 
the pulse duration is very short, usually never exceeding 10 f.lS. Thus, a pulse duration range 
of 0.1 to 10 f.lS might represent a strain rate of approximately 107 to 105 s·1. 

Murr (198la&b) summarized the effects of pulse duration on the residual structure and 
properties of shock-deformed metals and alloys: 

While longer pulse durations seem to allow for larger twin or twin-fault volume 
fractions in metals and alloys which twin at sufficiently high peak shock pressures, there 
is no significant effect on the residual hardness and related mechanical properties. 

In high stacking fault free energy metals such as nickel, where dislocation cells are 
formed, larger pulse durations do not alter the cell sizes but simply allow the cells to 
be more well defined or better developed, Fig. 9.30. 
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While twin volume and martensite volume fractions have been observed to increase 
with increasing shock pulse duration over the range of about 1 to 10 JJS (Fig. 9.30), the 
corresponding hardness does not change because the deformation gradient wavelength 
is not altered significantly. 

In low-stacking fault free energy alloys, at very short pulse durations (<0.50 JJS ), 
irregular behaviour may occur due to peak pressure instabilities and uncertainties which 
result from the use of flyer plates to create a planar shock wave. The result can result 
in, for instance, variations in residual hardness (see Murr, 1981). 

9.3.6. STRAIN RATE EFFECTS OF UNIAXIAL STRESSES 

Most metals and alloys exhibit effects of varying strain rate on deformation mechanisms. 
Plastic strain rate is commonly expressed, with the inclusion of the microstructure, by the so
called Orowan expression: 

(9.6) 

where 

b is Burgers vector 
Pm is the mobile dislocation density 
v is the average dislocation density 

and both Pm and v are considered to be functions of the stress o. and plastic strain eP. 

9.3.7. STRAIN-RATE SENSITIVITY 

Strain-rate sensitivity, at constant strain, is often expressed by 

(9.7) 

where K is a constant. 

Strain-rate sensitivity has been measured experimentally to vary significantly when defined 
as a function of flow stress as 

P=(~) 
E a logE e 

(9.8) 
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Figure 9. 3 0. Examples of the effects of plane-wave shock pulse duration on the residual 
properties of metals and alloys. "Reprinted from Murr, L. E., Metallurgical Effects of Shock 
and High-Strain-Rate Loading, in: Blazynsk:i, T. Z. (editor), Materials at High Strain Rates 
(1987), l-46, with pennission from Chapman & Hall". 

It is apparent from (9.8) that with the creation of mobile dislocations, Pm begins to 
saturate, or if the average dislocation velocity v becomes limited in some way, the strain-rate 
sensitivity, ~ .. will change noticeably: In this context, ~. is found to increase when e exceeds 
roughly 103 s-1 (e. g., Campell, 1970 and Lindholm, 1978), but below that range, ~ either 
does not increase or the change is irregular. 

Figure 9.31 illustrates some stress/strain/strain-rate curves for copper at various strains 
and over a range of strain-rates, along with similar, smoothed curve data for Nitronic 40 and 
type 316 stainless steels based upon some of the experimental results ofFollansbee (1986). 

The increased rate sensitivity above 103 s-1 (denoted as the high strain rate region) is 
quite apparent for copper (Fig. 9.31a), while, for the stainless steels (Fig. 9.3lb), the 
increased rate sensitivity appears to begin at strain rates as low as 102 f 1. 
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Figure. 9.31. Flow stress versus strain rate curves for some face-centered cubic metals and 
alloys. (a) Copper measured at various strains; (b) Nitronic 40 and 316L stainless steels at a 
constant strain. "Reprinted from Murr, L. E., Metallurgical Effects of Shock and High-Strain
Rate Loading, in: Blazynski, T. Z. (editor), Materials at High Strain Rates (1987), 1-46, with 
kind permission from Chapman & Hall". 

Figure 9.31 illustrates the connection between uniaxial shock loading and uniaxial high
strain rate deformation. The figure shows a comparison of the mechanical threshold stress 
(measured at a constant strain of 0.0825) as a function of strain rate for copper from the 
experiments ofFollansbee (1986). The estimated strain-rate range for a corresponding shock 
loading experiment 105 to 107 s·' is indicative of the fact that the increased strain-rate 
sensitivity of the threshold stress noted at strain rates exceeding- 103 s·1 continues into the 
shock loading regime. 

Measurements of the mechanical threshold stress (Fig. 9. 31) coupled with an analysis 
of the dislocation-obstacle interactions led Follansbee (1986) to the conclusion that the 
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increased strain-rate sensitivity arises from the rate sensitivity of the microstructure evolution 
rather than from any change in the involved deformation mechanism. Murr (1987) supported 
the latter conclusion by referring to the fact, revealed from examinations of residual 
microstructures over a range of strain rates for copper and stainless steel, that the 
microstructures may change neither abruptly nor characteristically. In copper, for instance, 
changes in dislocation cell size and density are consistent with the mentioned conclusion. In 
type 304 stainless steel, the microstructure and its evolution support this conclusion (Murr, 
1987). 

9.3.8. ADIABATIC SHEAR PHENOMENA 

When metals and alloys are deformed at very large strains and at very high strain rates 
such as in ballistic impact and penetration, forging and machining, localized shearing can 
occur, leading to localized deformation and a localization of heat generation. At high strain 
rates, heat generated in the localized bands provides some self-acceleration to the localization, 
and even melting. This concentration of deformation leads to two categories of adiabatic 
shear bands; namely, "deformation" and "transformation" bands. The microstructure 
associated with these bands includes dynamic re-crystallized microstructures, dislocations, 
microtwins and twin-faults as a result of the shear deformation in the localized bands. These 
fine and intermixed microstructures lead to very small deformation gradient wavelengths, and 
dramatic increases in localized hardness or residual flow stress (Murr, 1987). The reader is 
referred, in this context, to the work of Bedford et a/. ( 1974), Blicharski and Gorczyca 
(1978), Malin and Hatherly (1979), Rogers (1979, 1983), Aghan and Nutting (1980), Murr 
eta/. (1986), Stelly and Dormeval (1986) and Dormeval (1987). 

'Adiabatic shearing' is one aspect of high strain-rate deformation that has received 
much attention for some years due to the large number of applications in which it appears to 
play a significant role. Although this phenomenon was discovered and studied over five 
decades ago; e. g. Zener and Holloman (1944) and Zener (1948), the phenomenon was not 
considered for a long time, and it was only in early 1970s that researchers began to take a 
new interest in its study. 
In metals, it has been determined that at room temperature about 90% of the work of 
deformation energy goes into heat. Adiabatic shearing is a particular situation in which the 
heat generated in localized bands cannot be dissipated because of the high level of strain rate 
in conjunction with the thermal properties of the material. An idealized adiabatic deformation 
does not exist, some part of the heat being always lost to the surrounding metal and the 
environment. However, the term 'adiabatic' is taken to refer to the fact that a large portion 
of the heat is retained in the band. 

"Shear bands" form as a result of a thermo-mechanical instability due to the presence 
of a local inhomogeneity, inducing local deformation and heating. If the thermal properties 
of the material are not sufficient to conduct the generated heat away, the deformation 
becomes unstable and is localized on surfaces of very small thickness (- I 0 to 50 microns). 
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On microscopic observation, these surfaces appear as narrow bands in which cracks can 
propagate (Fig. 9.32), inducing catastrophic failure ofthe materiaL 

Adiabatic shearing is involved in a large number of processes where high strain rates 
occur, e.g., impact, penetration, fragmentation, machining, metal forming. 

(I) 

Figure 9:32. Evidence of adiabatic shear bands in T A6V titanium alloy: (a) fragment from an 
explosively expanded cylinder; (b) chip (machine-turned). "Reprinted from Dormeval, R., The 
Adiabatic Shear Phenomenon, in: Blazynski, T. Z. (editor), Materials at High Strain Rates 
(1987), 47-70, with kind permission from Chapman & Hall" . 

It is traditional to distinguish two types of adiabatic shear band: 

Deformed bands. They are characterized by a very high shear strain (up to 100) in a 
very thin zone of deformation. Inside the band, the grains are highly distorted, but there 
is no evidence of a change in the microstructure of the materiaL 

Transformed bands. In these bands, a crystallographic phase change occurs. In steels, 
for instance, they are often called 'white bands', Fig. 9.32, as their appearance after 
itching is quite different from that of the matrix. 
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CHAPTER 10 

PLASTIC INSTABILITY AND LOCALIZATION EFFECTS 

10.1. Introduction 

A decrease in stiffiless due to geometrical change and/or material softening caused by 
deformation is responsible for the occurrence of instability phenomena in engineering 
materials within the plastic range; i.e., beyond the yield point. Such phenomena manifest 
themselves in various ways; e.g., buckling, bulging, necking and shear banding. Once such 
instabilities are started, they tend to persist and the stiffitess of the specific cross-sectional 
area of the specimen decreases; therefore deformation intensifies locally and eventually leads 
to final collapse and/or failure. 

Because the occurrence of much instabilities is an important precursor to collapse or 
failure, computational prediction of the onset and of the augmentation ofthese instabilities 
is essential and indispensable in understanding the ultimate strength of the structures and 
materials, and in predicting and improving plastic solids formability. 

The onset of plastic instability is likely to be related to the point where "bifurcation" 
from the fundamental path becomes possible 

The point of bifurcation maybe obtained by applying "Hill's bifurcation theorem 
(1958)" for "associative materials" under "conservative loading"; Hill (1958). 

A more elaborate theorem must be employed for "non associative" and "nonlinear' 
materials; see, e.g., Tomita (1994). 

l 0.2. Onset of Shear Banding 

The onset of shear banding can be analysed within the framework given by Hill 
(1962a), and Rice (1976). 

The necessary conditions for the earliest possible localization of instabilities may be 
determined by the linear instability theory (Leroy and Ortiz, 1989). 

Under specific conditions, post bifurcation behaviour, immediately after the 
bifurcation point, may be expressed by the sum of the fundamental solution at the bifurcation 

52 
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point and a suitably 
normalized bifurcation mode (Hutchinson 1973a). 

Regardless of the problem associated with the material characteristics and loading 
conditions, the so-called "Growth of Plastic Instability" may be predicted with proper 
computational conditions. 

10.2.1. BASIC EQUATIONS 

Virtual work principle: 

In this section, the governing equations for an 
elastic-plastic boundary value problem are given 
within the context of large-strain theory. An 
updated Lagrangian formulation of the field and 
constitutive equations is employed 

Consider an equilibrium state for a body, 
with volume V and surface S, subjected to a 

T 

V, s 

u 

An equilibrium state of the body 

velocity constraint on Sv and traction on the remaining part of S, i.e., S,. Each particle is 
labelled by a set of curvilinear coordinates~ (see Appendix D). The latter are embedded in 
the body in the current state and serve as independent variables. In the deformed 
configuration, the covariant component of metric tensor are denoted by Gu . The weak form 
of the equation governing the rate of stress and traction yields the virtual work principle (Hill, 
1958, Seguchi et al., 1971, Kitagawa et al., 1972). 

where: 

(.),Q 

J ( "L}i + oii ui, ~) o ui,j d V = J t i o ui d S 
(10.1) 

v ~ 

is the Kirchhoft stress (Chapter2). It is identical to Cauchy stress oii in the 
current configuration. 
is the nominal traction rate. 
is the virtual velocity satisfying the homogeneous boundary condition over 
surface 
(an over dot) denotes a material derivative. 

denotes the covariant derivative with respect to the current coordinates 
(Appendix A). 

For the body with configuration dependent loading, the nominal traction rate P iin 
(lO.l)isgivenas 
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T G) 
I 

Configuration 
independent 
traction rate 

Configuration 
dependent traction 
rate 

(10.2) 

Followi!lg Hill (1962a), Sewell (1967) and Dubey (1970), the configuration-dependent 
traction rate T u' may be expressed as a function in the velocity U; and velocity gradient uij as 

T; = Aji u. + rfri:1 R ijko u 
u J '1-Y Q,k 

the surface unit 
normal 

(10.3) 

The tensors N; and Rijkl are independent of the velocity. The first term in (10.3) may 

represent the traction induced by elastic formulation and the second term may represent the 
follower force; see, e.g., Timoshenko and Gere (1961). Under certain conditions, the 
configuration dependent traction rate may have potential and the variational principle can be 
established (Tomita 1994). 

For a body with pressure p on the portion of the surface St> T 0; and T u; are given by 

. i .. 
T =-p·n.G'1 

0 J 

T; = n. Rjikl u 
u J Q,k 

(10.4) 

Meanwhile, the weak form of the energy balance equation for the same body subjected to heat 

flux q = -11; q; = Q on Sq and temperature constraint on Sr can be established by multiplying 
the local form of the energy balance equation by ()T which satisfies the homogeneous 

boundary condition on Sr as expressed by 
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specific heat Thermal conductivity 

1 

tensor 

j&T(i) {0tdV 'jBT,, ~T.;dV 
v /_ v 

mass density = foT@dv + JoTQdS 

v I sq 

fraction of irreversible 
work 
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(10.5) 

In (10.5), the fraction of invertible work w P = a'ijD;r which is converted to heat is a, where 
a is in the range of0.85 - 0.95 for many metals; Taylor and Quinney (1934). Meantime, the 
specific form of heat flux Q depends on the respective boundary conditions. 

Constitutive Equations 

Predictions of instability behaviour strongly 
depend on material response. 

In elastic-plastic material response, the plastic part Dk~ of 
the strain rate Dkl' Dk1 = ( uk 1 + u1 k) /2 is usually 
specified through various classes of constitutive 
equations. 

Elastic material response takes the form of a 
linear relationship between the elastic strain rate, 
Dk~ = Dk1 - Dk~t ,and a suitable objective stress rate as 

An elastic constitutive tensor 

v,s 

Meantime, the constitutive equation for elastic-plastic response can be expressed as 

(10.6) 
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Eij = Lijkl D 
kl (10.7) 

where Liikl is an elastic-plastic constitutive tensor which depends on the current stress, the 
deformation history and the choice of an objective stress rate. Reference in this context is 
made to Dafalias (1983), Loret (1983), and Dafalias and Aifantis (1990), among others. 

For the material obeying the flow rule, plastic strain rate D;r can be expressed by 

o.P = _1 rm Emn (mJ 
IJ h ~ 
J ® directions of plastic strain 
/ normal to components 

(10.8) 

the hardening modulus the yield surface 

For n;i = mii• the constitutive equations derived for associated flow rule are recovered. The 
constitutive equations following "J2 flow theory" (Hill 1958, Hutchinson, 1973b ), "J2 

Kinematic hardening theory" (Tvergaard 1978) and many anisotropic theories (see, e.g., 
Neale 1980, Tomita 1994) fall into the special case of eqn. (1 0.8). 

Rudnicki and Rice (1975) expressed in their model nii and m;i by the following relationship 

and 

m.. = '3 a' .. /2 o + MG .. /3 IJ VJ IJ IJ (10.9) 

Specific values ofB and M can be determined, for instance, by a Gurson-type yield 
function (Gurson 1977, Tvergaard, 1981 ). 

A kinematic hardening version of the material was suggested by Mear and 
Hutchinson (1985) and Tvergaard (1987). Tomita (1994) extended the model to account for 
the change in elasticity modulus due to the void volume fraction. 

The deformation type constitutive equation, originally proposed by Budiansky (1959) 
has been generalized to account for finite strain (Storen and Rice, 1975, Needleman and 
Tvergaard, 1977, Hutchinson and Neale, 1973) and anisotropy (Tomita and Shindo, 1985). 
The plastic strain constitutive equation is 
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D n 1 ~nm 1 (~· ~nm ) , =h·~~ ";;· r ~;; ~n,.~ ., (10.10) 

a new harderning modulus 

The constitutive eqn. (1 0.10) is valid for the deformation satisfying the total loading 
condition (Budiansky 1959). 

For the strongly non-proportional stress histories, Christofersen and Hutchinson 
(1979) proposed the "corner theory" in which an angular measure <I> of the stress rate 
direction with respect to the comer direction of the yield surface is defined. The 
instantaneous moduli for nearly proportional loading, <I> ~ <l>o, are chosen equal to those of 
deformation theory, and for increasing derivation from proportional loading <l>o ~ <I>~ <l>c, 
the moduli stiffen monotonously until they coincide with the linear elastic moduli for elastic 
deformation or unloading. 

The plastic strain rate constitutive equation can be expressed by 

A transition function; it is 
unity throughout the total 
loading range, 0,;: e,;: e o• 

and is identically zero for 
6c ,;;6:o:1t. Here, f(6) 
decreases monotonically 
from unity to zero as 6 
increases form e 0 to e c· 

Plastic compliance tensor 

(10.11) 

The Bauschinger effect (Tomita et al., 1986) and anisotropy (Tomita et Shindo 1990) have 
been concretely introduced in the constitutive eqn. (10.11); see, also, Gotoh (1985). 
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10.3. Strain-Rate and Temperature Effects 

Engineering materials generally do possess strain rate and temperature sensitivities 
to various extents. These have an important effect on instability behaviour. Here we restrict 
our attention to an isotropic material and assume that the relation of representative stress o, 
representative viscoplastic strain £0 , representative viscoplastic strain rate ~v and absolute 
temperature T has the form 

or 

(10.12) 

Tomita (1994) advanced that the constitutive equation for plastic strain rate, eqn. (10.10) 
may be modified to include the effect of strain rate and temperature sensitivity. The 
viscoplastic strain rate D;J is proposed to be given by 

D- = - n L + n. T n + - L . - n L"m n v1( ') 1(• ) 
'JhnmmnP 'lh IJ nm IJ 

s 

- O;j n .. ----, 
IJ f2i3 0 

2-'-
h=~ h =~ 

' s -

(10.13) 

3ev 
3 EVW 

In (2.13 ), w accounts for the degree of non-coaxiality of the viscoplastic strain rate 
to the stress tensor (Tomita and Shindo 1985), and p stands for the temperature sensitivity 
of the flow stress. Naturally the situation w ~ 0 provides a generalized constitutive eqn. 
following the "J1 jlow theory"; Tomita (1994). 

When the total strain rate Dii is assumed to be the sum of an elastic strain rate D;~, 
accounting for the temperature dependent elastic response, and a viscoplastic strain rate D;i , 

Eqn. ( 10.13 ), tht; constitutive equation for stress rate L; , strain rate Dk, and the rate of 
charge in temps Tis then established (Tomita eta!, 1990 ). 

A concrete form of (1 0.12) which is often used has the form 
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---- . ·------- --- -- ---- ---

! 

I 

I 

[ l m 
- n --=-
e' e' 

1 +-) 1 +--;-
eY ey 

(10.14) 

-------- -~------- --- - ------

where 0 0 (T) is temperature dependent stress characterizing the thermal softening affect, and 
nand mare strain and strain rate sensitivity components, respectively. Here f), andey are 
reference strain and strain rate, respectively. 

According to the experimental observation of the response of the material under a 
multi-axial stress condition and high rate of deformation, the constitutive equation is quite 
complicated, and the strain- rate sensitivity exponent m, generally depends on the strain rate 
applied and increases as the deformation rate increases. 

Furthermore, for specific materials, an abrupt increase in the strain rate during the 
deformation process causes a substantial increase/decrease in flow stress as seen in 
steel/copper (Campbell eta!. 1977, Mimura and Tomita, 1991, Tomita and Higo 1993). 

Such substantial increase/decrease in the flow stress will be referred to as "positive" 
and "negative" strain-rate history dependence. respectively. Such an effect may be accounted 
for (see Tomita, 1994) by 

l - [ l+-'vll x I +A (Be;)" In I + :; 

(10.15) 

In (10.15), A and B account foLthe mate!ial strain rate and strain history dependence of the 
flow stress, respectively, and e~ and e v are viscoplastic representative strain and its rate 
before abrupt charge in strain rate, respehively (Tomita and Higo, 1993). 

In order to avoid numerical instability and maintain the required accuracy, suitable 
integration schemes for the rate-type constitutive equation must be employed. In this context, 
for the temperature-independent case, in the Euler method, the size and the time steps must 
be determined such that the stress exactly satisfies the yield condition in the course of 
yielding (Yamada et al 1968), and the magnitude of the increment of the displacement as 
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well as the rotation is restricted to avoid numerical instability (Nagtegaarl and Jong, 1981 ). 

These methods have been extended to the strain rate and temperature-dependent 
constitutive equations (Peirce et al. 1984, Rashid and Nemat-Nasser 1992, and Nernat-Nasser 
and Li, 1992). 

Iterative methods such as the radial return method (Krieg and Krieg, 1977) and mean 
normal method (Rice and Tracey 1973) have been developed and extended to different types 
of materials. 

Return mapping algorithms capable of accommodating the general yield condition 
and arbitrary flow hardening rules; nonlinear elastic response for general rate-independent 
and rate-dependent behaviour (Ortiz and Simo, 1986); versatile integration algorithms 
including their application to the treatment of nonsmooth yield surfaces (de Borst, 1987, 
Simo et al 1988, Runesson et al 1988), their accuracy (Ortiz and Popov 1985, and Ortiz and 
Simo 1986) and consistent tangent operators (Simo and Taylor 1985, Runesson et al. 1986, 
Simo et al. 1988) have been extensively investigated to obtain a converged and accurate 
solution. 

Runneson et al. (1988) also provides an excellent brief review ofthe development of 
integration schemes. Furthermore, the treatment of large increments of strain (Hughes and 
Winget, 1980, Pierce et al, 1984, Simo and Ortiz, 1985, Runesson et al, 1986, Rashid and 
Nemat Nasser 1992, Nemat-Nasser and Li, 1992) is indispensable for large strain and 
displacement analysis. 

As long as the deformation is sufficiently small, the elastic-plastic boundary value 
problem has a unique solution which is referred to as the fundamental solution. 

When the deformation reaches a certain value, bifurcation from the fundamental 
solution becomes possible. The point of bifurcation can be found throuEh the use of Hill's 
Eeneral theory of bifurcation and uniquesness (Hill. 1958) for elastic-plastic solids. This 
theory states that the solution is not unique when a nontrivial solution can be found for the 
eigenvalue problem given by the following variational equation 

Bifurcation functional 

\ &1=0 

CD =J(E*ii +oiiv.'.dV 
l,J 

v (10.16) 

-J t.; v.' d S 
V I 

s, 
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Bifurcation condition (1 0.16) is valid only when the material follows an associative 
flow law, whereby the superscripted asterisk denotes the difference between the fundamental 
solutions and the second one. The surface integral in (1 0.16) arises from the configuration 
dependence of the loading. Meantime stress rate E•ii is related to strain rateDk*l by 1 

I;•ij-

//// 

Is assumed to be symmetric 
when the material follows an 
associative flow law. 

kl 
(10.17) 

Is assumed to be a constitutive 
tensor for a linear comparison 
solid, in which the plastic parrt of 
the constitutive tensor is 
employed for the current plastic 
zone. (see Tomita, 1994). 

When the bifurcation functional I (Eqn.l0.16) is approximated in terms of finite 
elements, one can arrive at an approximate functional of the following form 

I ={o·Y {K} {o·} (10.18) 

where{o*} denotes the values of< at the nodal points. The stationary condition of the 
approximate functional with respect to {o*} yields the following homogeneous algebraic 
equation 

{K} {o*}=O (10.19) 

When the equation (1 0.19) has a nontrivial solution, bifurcation may occur. 

At every computational step, the vanishing point of the determinant of the coefficient 
matrix of (1 0.19), i.e. 

det [K] = 0 (10.20) 

is checked. Usually, when the sign of the det [K] changes at a specific incremental step, an 
iterative method is used to determine the accurate vanishing point of the determinant. 

The bifurcation mode is obtained as the eigen-mode of the homogeneous equation 
(10.19). 
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In this context, reference is made to Kitagawa et al (1980, 1982), de Borst (1989), 
Bardet (1990), and Leroy and Chapuis (1991). The special case where two or more 
eigenvalues of [K] may simultaneously change sign, has been treated by de Borst (1989). 

With reference to condition (10.20), at every computational step of the analysis, the 
vanishing of the determinant of the coefficient matrix is checked against several modes. The 
first bifurcation point is referred to as the "Critical Bifurcation Poinf', and its mode is 
referred as the "Critical Bifurcation Mode" 

10. 4. Bifurcation Analysis for Specific Constitutive Equations 

When the material follows the nonassociative flow law, the bifurcation condition 
(10.16) becomes invalid because of the nonsymmetry of the tensor Oikl in (10.17). 

EXAMPLE: 

I. Linear Constitutive Equation 

Raniecki ( 1979) and Raniecki and Brunhs (1981) introduced two comparison solids 
to determine the bifurcation point for the material obeying the non-asssociative flow law. 

The first comparison-solid is from the "one-parameter family" of "linear comparison 
solids" with the following strain rate constitutive form 

~-~~-
D iikl = D~u _ _!_ p ii q kl 

G 

(10.21) 

where His the hardening modulus and Ill;i and ll;i are the directions of plastic strain rate and 
the normal to the yield surface, respectively. Here ~ is a positive parameter. 

The solid obeying the constitutive eqn. (10.21) is referred to as an "Alternative 
Comparison Solid''. Raniecki and Brunhs (1981) proved that if uniqueness is certain for 
these comparison solids, then bifurcation is precluded for the underlying materials. The 
bifurcation point for these comparison solids provides the lower bound to a solid with the 
"non-associative flow law". However, the still undetermined positive parameter ~ in the 
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constitutive tensor is a function of the particle position and should be optimized to give the 
closest lower bound. For the homogeneous fundamental deformation, the optimal lower 
bound can be determined as (e.g., Raniecki, 1979) 

(10.22) 

The lower bound to the bifurcation point is not ordinarily the bifurcation point of the 
underlying material. Consequently, the search for the genuine bifurcation state is replaced 
by a search for upper and lower bounds: 

i) the lower bound: Here the occurrence of bifurcation is checked against the vanishing 
point of the ~-value determinant matrix, det [K (~)],expressed in (10.20), at every 
step of the analysing of the fundamental solution. With note of the positiveness of 
these determinants up to the bifurcation point, the maximization of the determinant 
with respect to the positive parameter ~ at each step of fundamental analysis 
substantially improves the accuracy of the lower bond. 

ii) the upper bound: Here the concept of a second-comparison solid, a "nonload.ing 
solid'' is introduced and shown with the nonassociative flow law such that the first 
eigenstate of such a comparison solid identifies an upper bound to the bifurcation 
point of the underlying solid. 

II. Nonlinear Constitutive Equation 

For a material obeying a nonlinear constitutive equation such as Christoffersen and 
Hutchinson's comer theory (1979), the bifurcation theory should be generalized 
(Triantafyllidis 1985). 

At same stage of deformation, stress oY, displacement llj and any state variables in the 
constitutive equation, as well as their corresponding rates, are known and unique. Then, the 
following bifurcation functional, quadratic in vt, and bifurcation condition for displacement 
prescribed loading are defined as (see Tomita, 1994) 

o I= 0 

I= J (L:•ii + 0 ii v~.) A v 
l,J (10.23) 

v 
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where E* ij is related to I\'1 by 

E*ij = Liikt I\', (10.24) 

In (1 0.24 ), Oi<l is the constitutive moduli tensor of an actual solid in the fundamental state. 

The bifurcation functional (10.23) has been used to determine a lower bound for the 
first bifurcation. On the other hand, Tvergaard (1982) assumed the uniqueness of stress oii, 

displacement u; and any state variable in the constitutive equation and employed the 
bifurcation functional (I 0.16) with the actual constitutive moduli tensor in the fundamental 
state to obtain the upper bound for the critical load. 

10.5. Post Bifurcation Analysis 

The solution of the boundary value problem at the bifurcation point can be expressed 
by the sum of the fundamental solution and a suitably normalized eigen mode for the 
variational equation. 

The specific amplitude of the eigen mode is determined so that loading occurs 
everywhere in the current plastic zone, except at one point where neutral loading takes place 
(Hutchinson, 1973a). This solution reveals the postbifurcation behaviour just after the 
bifurcation point. 

Due to the highly nonlinear nature of the postbifurcation behaviour, numerical 
analysis appears indispensable, e.g., by employing the virtual work principle with finite 
element approximation. 

When the materials obeys the constitutive equation derived by the nonassociative 
flow law or expressed by the nonlinear relation between the stress and strain rates, the 
bifurcation point obtained does not necessary provide the real bifurcation point. Thus, the 
post-bifurcation behaviour must be traced approximately by employing bodies with initial 
imperfections, through, again, the virtual work principle. 

The proper magnitude of imperfection which depends on the problems and the 
significant features of the computational facility, must be introduced to simulate 
approximate bifurcation and post bifurcation behaviour (Tomita et al. 1984). 
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10.6. Plastic Instabilities in Specific Problems 

1 0.6.1. INSTABILITY BEHAVIOUR OF CIRCULAR TUBES 

The problem of predicting the deformation behaviour of an elastic-plastic tube 
subjected to a combined load is an important one in mechanics and in engineering 
applications. Thus, significant research effort has been undertaken on this topic so far. 

Following Tomita (1994), the presentation below concentrates on axisymmetric and 
non-axisymmetric bifurcation and post-bifurcation behaviour of elasto-plastic circular tubes 
under lateral pressure and axial load. 

For axially plane strain problems, the bifurcation functional has the form (Chu 1979, 
Tomita et al., 1981 ). 

a 

Irn=n: J ~:Brn~rnrdr-p.n:a 2 (~:em ~rnL. 
b (10.25) 

+ pb 1t b2 (~:em ~rn) r=b 

1\ ( ~rrn V'Bm 1\ 1\ ] v= ---v v m r r rn.r Bm,r 

where Pa and Pb are internal and external pressure, respectively. Bm and en are matrices 
depending on the physical components of the constitutive tensor and a bifurcation modem. 

The bifurcation functional (10.25) and its slightly extended version have been 
extensively employed in the prediction of the onset of bifurcation for internal pressure (Chu 
1979, Tomita et al 1981, Reddy 1982) and external pressure (Tomita and Shin do 1982) under 
plane strain conditions, and for the combined loading condition of internal pressure and axial 
force (see Tomita, 1994). These are considered frequent collapse problems for design 
purposes. 

On the other hand, although the number of investigations is rather restricted, the 
initial to intermediate post-bifurcation behaviour (Tomita et al1981, Tomita and Shindo 
1982) and localization of the deformation accompanied by shear bands (Larrson et al. 1982) 
have been clarified. However, these studies are restricted to the deformation under axially 
plane strain conditions (Tomita, 1994) .. 

Tomita et al. (1984, 1986) investigated the loading path-dependent bifurcation and 
post-bifurcation behaviour of tubes subjected to axial tension and internal pressure, and the 
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localization behaviour oftubes under axial load and external pressure. 

Fig. 10.1 shows a few results obtained by Tomita et al. (1986}. The positive axial 
loads substantially lower the maximum pressure, however, these effects diminish as 
deformation proceeds. The Bauschinger effect is quite noticeable for a tube with positive 
axial load. In Fig. 1 0.1 b, the critical displacements at which the stress system first satisfies 
Hill and Hutchinson's surface instability and shear band formation condition (Hill and 
Hutchinson 1975) are shown. The influence of axial bond, the Bauschinger effect and corner 
formation, including the corner angle, and the mobility of the yield surface on the formation 
ofuneveness and shear band, and their growth were investigated (Tomita, 1994}. 
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Figure 1 0.1. Bifurcation and postbifurcation behaviour of thick-walled tubes subjected to 
external pressure p and axial force L. (a) Computational model and notation. (b) Pressure 
p versus displacement u relation. (c) Axial strain e. versus displacement u relation. m: 
parameter defining partial translation of yield surface. m = 0: no rotation, oy: initial yield 
stress. "Reprinted from Int. J. Mech. Sci. 28 (5), Tomita, Y., Sltindo, A., Kim, Y. S. and 
Micltiura, A., Deformation behaviour of elastic-plastic tubes under external pressure and 
axial load, pp. 263-74, 1986, with permission from Elsevier Science". 
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10.7. Instability Propagation (Metallic and Polymeric Materials) 

For many ductile materials, once inhomogeneous deformation has started, further 
flow localization is accompanied by an increase in deformation, which in turn leads to final 
fracture. 

On the other hand, the necking of many polymers initially develops in the specimen 
in a manner similar to that observed for ductile materials, and this subsequently propagates 
along the specimen under an essentially steady-state condition (Hutchinson and Neale 1983). 
In case of polymers, however, the "re-stiffening effect", which is observation in the high
strain region in polymer and is generally caused by the alignment of material chains, 
randomly oriented in the undeformed state, is seen to be responsible for neck development 
and propagation. 

The mechanical aspects of instability propagation in polymeric material have recently 
received much attention: 

Hutchinson and Neale (1983) and Chater and Hutchinson (1984) investigated the 
neck propagation of tension blocks, bulge propagation in long cylindrical balloons 
and the buckle propagation of tubes under lateral pressure in terms of simple one
dimensional anlaysis or approximate steady-state analysis. 

Fig. 10.2 shows the uniaxial stress-strain relation, corresponding elongation curves 
and deformed shape of the specimens (Tomita and Hayashi, 1991& 1993). After the 
maximum load point, necking starts and it develops until the load attains the load 
minimum. Then it propagates with an almost constant load. The propagation may 
not appear when the strain at the re-stiffening point is smaller than strain at the 
maximum load point. 

Except under conditions of very slow deformation, the propagation behaviour of 
instability manifests different features associated with frictional heating of the 
polymer undergoing large deformation. 

In a subsequent study, the effects of strain rate sensitivity (Tugcu and Neale, 
1987 & 1988) and the temperature dependency (Tugcu and Neale, 1990, Tugcu et al, 1991, 
and Tomita and Hayashi, 1991&1993) on the neck propagation behaviour have been 
investigated with a constitutive equation similar to (1 0.13). 

Figure 10.3 shows the thermo-elastoviscoplastic neck propagation behaviour. In this 
Figure, U is the normalized end displacement rate and AD stands for a locally adiabatic 
process, otherwise thermocoupled analysis is performed. 
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Figure 10.2. Deformation behaviour of polymeric material under tension. (a) Uniaxial true 
stress a-natural strain e relations for different temperatures, u: end displacement, 2L: initial 
length of the specimen. (b) Load o- elongation u!L cwves under quasi-static deformation 
rate. (c) Deformed specimen profiles at u/L = 0.8 for quasi-static and isothermal 
deformation. "Reprinted from Int. J. Solids Structures 30(2), Tomita, Y., and Hayashi, 
K., Thermo-elasto-viscoplastic deformation of polymeric bars under tension, pp. 225-35, 
1993, with permission from Elsevier Science". See, also Tomita and Hayashi (1991). 
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As shown in Figure 1 0. 3, at a low rate of deformation, the stabilization effect by re
stiffening overcomes the destabilization effect due to thermal softening, and the neck 
propagates along the tensile direction with a heat source which can be seen in the temperature 
distribution along the tensile axis. 

Thus, the deformation-induced heating and its conduction strongly affect the neck 
propagation behaviour for a relatively low rate of deformation. 

As a result, predictions based on steady-state analysis with the adiabatic assumption 
will provide an improper estimation because the deformation-induced heating tends to cause 
nonsteady-state deformation, which increases as the material strain rate sensitivity increases 
(Tomita and Hayashi, 1991&1993). 
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Figure 10.3. Thenno-elasto-viscoplastic neck propagation behaviour. (a) Deformed profiles 
for different strain rates of2xlo·s U, AD: with assumption oflocally adiabatic process. (b) 
Temperature distribution along tension axis y. u: end displacement, 2L: initial length, 
T; : initial temperature, 296 "K, m: strain-rate sensitivity exponent. "Reprinted from Int. 
J. Solids Structures 30(2), Tomita, Y., and Hayashi, K. , Thenno-elasto-viscoplastic 
deformation of polymeric bars under tension, pp. 225-35, 1993, with permission from 
Elsevier Science". See, also Tomita and Hayashi (1991). 
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Furthermore, anisotropy caused by microscopic mechanisms of the molecular chains 
and the distribution of their orientation due to excessive deformation is quite important: 

Boyce et al (1988) developed a three-dimensional constitutive model describing the 
inelastic response, including the strain rate, temperature and strain softening/hardening of 
glassy polymers, based on the micromolecular structures of materials and corresponding 
micromechanisms of plastic response. 

Boyce and Arruda (1990) verified that the constitutive equation can predict the major 
aspects of the material well. 

Since the identification of the constitution response is quite difficult due to the 
complicated nature of the deformation behaviour of polymeric material, including the special 
attention to experimental methods (G'Sell and Jonas, 1979), further developments in the 
hybrid strategy in cooperating precise experiments and computational simulation (Tomita 
and Hayashi, 1991) are expected to yield a better understanding of the actual response of the 
polymeric material. 

10.8. Flow Localization ofThermo-Elasto-Viscoplastic Solids 

Localization of plastic flow into shear bands has been observed in various materials 
and is recognized to be a very important precursor to failure. 

1 0.8.1. RATE-INDEPENDENT MATERIALS 

Intensive studies have been performed on different classes of rate independent 
materials (e.g., Rice 1976 and Needleman and Rice, 1978 for development oflocalization 
and have clarified the critical dependence of the localization conditions and the localization 
processes on the constitutive description. 

1 0.8.2 RATE-DEPENDENT MATERIALS 

The real strain-rate-dependent flow localization manifests itself as different features 
depending on the rate of deformation, with the understanding that, thermocoupled analysis 
is inevitable (Chung and Wagoner, 1986, and Tomita et al, 1990) 

Thermo-coupled flow localization analyses without the inertial effect have been 
carried out by Lemonds and Needleman (1986 a, b), Kim and Anand (1987), Nemat-Nasser 
(1988), Nemat-Nasser et al (1989), Tomita et al (1990), Tomita and Nakao (1991, 1992) and 
Zbib and Jubran (1992) for plane strain tension. 

Kim and Anand (1987), Nemat-Nasser (1988), Nemat-Nasser et al (1989) and Zbib 
and Jubran (1992) assumed the adiabatic process which represents an upper bound on the 
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temperature, whereas Lemonds and Needleman (1986a,b ), Tomita et al. (1990) and Tomita 
and Nakao (1991,1992) accounted for the heat conduction. Plane strain quadrilateral 
elements with hourglass control (Nemat-Nasser et al 1989, Zbib and Jubran 1992) and 
crossed trangular elements (Lemonds and Needleman, 1986 a, Tomita et al, 1990, and 
Tomita and Nakao, 1991, 1992) are employed. An intensification of shear localization has 
been observed for large specimens, and the adiabatic assemption may provide suitable 
information on the specific order of the strain rate, which increases as the specimen size 
decreases (Tomita et al, 1990). Further, it has been clarified that the localization of the 
deformation is delayed by the strain-rate effect, strain-gradient dependent of the yield stress, 
as seen in equation (10.26) below 

(10.26) 

where o is the local flow stress. 

The results also illustrate that the interactions of material properties and thermal 
softening and the growth of voids are two competing and interacting softening mechanisms 
in porous materials. 

Dynamic flow localization analyses have been carried out by Needleman (1989) and 
Batra and Liu (1989, 1990) for plane strain compression. Needleman (1989) employed the 
softening constitutive equation as a simple model for a thermally softening solid. Then the 
problem is treated from a purely mechanical point of view with initial homogeneity of the 
flow stress near the centre of the block. 

Batra and Liu (1989, 1990) investigated a similar problem by introducing a 
temperature bump at the center of the block obeying thermally softening viscoplastic solids. 
Thermocoupled analyses have been performed. The results are in qualitative agreement with 
those of Needleman (1989). Except for a significant delay in shear band development due 
to the inertial effect, the main features of shear band development are the same as under the 
quasi-static loading condition. 

Wright and Walter (1987) studied the problem of dynamic simple shear of a finite 
slab of incompressible material and showed that in the late localization stages, the 
conductivity and strain rate set the width of the shear band. 

Batra and Zhang (1990) and Batra and Zhu (1991) investigated shear band 
development in a viscoplastic cylinder and bimetallic body containing two voids under 
dynamic loading. 

Figure 10.3 shows the results of the plane strain tension blocks under the average 
deformation rate u/L = 2000/ s and with both ends free and fixed under conditions without 
and with inertial force (Tomita and Higo 1993). A locally adiabatic condition is assumed. 
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Figure 10.4. Representative strain distribution in plane strain blocks, L=24 mm, m=O.Ol. 
(a) Without inertial effect. (b) With inertial effect. "Reprinted from Int. J. Mech. Sci. 
35(12), Tomita, Y. and Higo, T., Plane-strain flow localization in tension and compression 
of thermo-elasto-viscoplastic blocks under high rates of deformation, pp. 985-94, 1993, with 
permission from Elsevier Science". 

With reference to Fig. 10.4, in the case without inertial force (a), regardless of the boundary 
condition, localization predominantly develops near the center of the specimen, whereas 
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irregular flow localization is observed in the case with inertial force (b). The propagation of 
the dynamic force and boundary constraints play an important role in the onset and 
development of flow localization. 

Needleman and Ortiz (1991) gives a complete mechanistic explanation concerning the 
interaction between shear bands, free surfaces and interfaces. 

(d) 

(e) 

(I) 

Figure 10.5. Growth of undulation for dynamic compression of blocks near the stress-free 
surface. "Reprinted from Int. J. Mech. Sci. 35(12), Tomita, Y. and Higo, T., Plane-strain 
flow localization in tension and compression of thermo-elasto-viscoplastic blocks under 

high rates of deformation, pp. 985-94, 1993, with pennission from Elsevier Science". 

Fig. 10.5 (Tomita and Higo, 1993) shows the compression of the strip under a wide 

range of deformation rates U = U/ ( Q0 ey ) = 102 - I 06 : 
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A deformation process with heat conduction (CO) and a locally adiabatic condition 
(AD) have been assumed for a low and high rates of deformation, respectively (see, 
also Tomita et al. I993). 

Fig. 10.4 (left) shows the evolution of the undulation of the stress force surface. 

Fig. I 0.4 (right) depicts the representative strain distribution at a specific stage of 
compression e.=- 0.25. 

The general feature of the flow localization is essentially the same as that seen in the 
quasi-static case (Tvergaard, I982, Kitagawa and Matsushita, 1987). 

The surface undulation abruptly starts to increase at a specific point (which can be 
approximately obtained by linear perturbation analysis), and leads to the development 
of a shear band connecting the highly strained regions beneath the highly strained 
region in a zigzag faction. 

At a low rate of deformation, thermal softening is substantially suppressed by the 
heat conduction and causes significant delay in the evolution of the undulation and 
strain distribution. 

Competing effects of thermal softening and inertia are observed in the evolution of 
undulation and representative strain at a relatively high rate of deformation 

At very high rates of strain, over Hf s-I, the inertial effect overcomes the thermal 
softening and causes significant delay in flow localization and greater thickness of the shear 
localization zone. 

10.9. Effect of Material Rate History 

Fig. I 0.6 (Tomita and Higo I993) shows the effect of material strain rate history 
dependence on flow localization behaviour. Five different types of computations with the 
end velocity shown in Fig. 10.6a have been performed: 

The difference observed between cases I and II is attributed to the dynamic effect. 
As discussed above, the inertial force again stabilizes the deformation. 

Comparison of cases III and IV clarifies the effect of the material strain-rate history 
dependence on the flow localization. 

The comparison for cases II and III clarifies that the dynamic deformation 
subsequently applied to the quasi-static deformation stabilizes the deformation. 
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Since the stabilization effect of strain rate history dependence suppresses the 
development of flow localization, the ductility of the material is clearly increased by 
subsequent dynamic loading after pre-straining. The efficiency of increasing the ductility 
depends on the magnitude of pre-straining, as seen in case V. 

10.10. Three-Dimensional Effects 

The three dimensional aspects of localized deformation without inertial effect (Leroy 
and Ortiz 1990; Zbib and Jubran (1992) have been investigated: 

Zbib and Jubran (1992) assumed adiabatic deformation and clarified the smooth 
transition of plane stress to plane strain deformation by employing very thin to thick 
specimens. 

Fig. 10.7 (Zbib and Jubran, 1992) shows the deformed meshes with shear bands. 
A very strong three-dimensional geometric effect on the shear banding is observed. 
The orientation of the shear bands are 35.25° and 45°, respectively, and they are 
consistent with the theoretical predictions. Again, a softening mechanism and an 
initial imperfection are among the many cause of shear banding. The multiaxial 
effect stabilizes the deformation and yields a delay in localization (Zbib and Jubran 
1992). 

10.11. Problems 

1. Explain briefly the following terms: 

- Associative material 
- Conservative loading 
- Bifurcation state 
- Critical bifurcation point vs. Critical bifurcation point 
- Upper and lower bounds of a bifurcation state. 

2. Comment briefly on the aim of"Hill 's bifurcation theorem". 

3. What is configuration-dependent loading? 

4. What constitute uniqueness criteria in mechanics of solids ? 

5. What are conservative and non-conservative problems? 

6. Discuss briefly the three-dimensional effect on shear banding in a metallic material. 
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Figure 10.6. (a) Computational model for compression of blocks. Cases I, II: Constant 

velocity and without and with inertial effect, respectively. u1 = 0, T1 = 0, uiL=104 s·' . Cases 
ill, IV and V: with velocity jump at t = T1 and flow stresses exhibiting negative dependence, 

no dependence and positive dependence on strain rate history, respectively. u, /L = 0.002 
s·1 , u2 /L = 10 4 s·1 • Case VI: Case V with velocity jump at t = 2T1 , L = 1.0 mm. (b) 
Representative strain distribution at different stages of deformation during the dynamic 
compression of plane-strain blocks. Case I-VI correspond to those in (a). "Reprinted from 

Int. J. Mech. Sci. 35(12), Tomita, Y. and Higo, T., Plane-strain flow localization in tension 

and compression ofthermo-elasto-viscoplastic blocks under high rates of deformation, pp. 
985-94, 1993, with permission from Elsevier Science" . 
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Figure 10. 7. Dynamic tension of blocks with different thicknesses. "Reprinted from Int. 
J. of Plasticity 8, Zbib, H. M. and Jubran, J. S., Dynamic shear banding: A three
dimensional analysis, pp. 619-41, 1992, with permission from Elsevier Science". 
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CHAPTER II 

ELASTIC WAVE PROPAGATION 

11.1. Introduction 

When a localized disturbance is applied suddenly into a medium, it will propagate to other 
parts of this medium. The local excitation is not detected at other positions of the medium 
instantaneously, as some time would be necessary for the disturbance to propagate from its 
source to other parts of the medium. This simple fact constitutes a general basis for the 
interesting subject of "wave propagation". Well-cited examples of wave propagation in 
different media include, for instance, the transmission of sound in air, the propagation of a 
seismic disturbance in the earth, the transmission of radio waves, among others. In the 
particular case, when the suddenly applied disturbance is mechanical, e.g., an impact force, 
the resulting waves in the medium are due to mechanical stress effects and, thus, these waves 
are referred to as "mechanical stress waves", or simply "stress waves". Our attention in this 
text is restricted to the study ofthe propagation of stress waves in engineering materials. 

In rigid body dynamics it is assumed that, when an external force is applied to any one point 
of the body, the resulting effect sets every other point of the body instantaneously in motion, 
and the applied force can be considered as producing a linear acceleration of the whole body, 
together with an angular acceleration about its center of gravity. In the theory of deformable 
media, on the other hand, the body is considered to be in equilibrium under the action of the 
external applied forces, and the occurring deformations are assumed to have reached their 
equilibrium static values. This assumption could be sufficiently accurate for problems in 
which the time between the application of the force and the setting up of effective equilibrium 
is short compared with the time in which the observation is made. Meanwhile, If the external 
force is applied for only a short period of time, or it is changing rapidly, the resulting effect 
must be considered from the point of view stress wave motion. 

Mechanical stress waves originate due to a forced motion of a portion of a deformable 
medium. As the other parts of the medium are deformed, as a result of such motion, the 
disturbance is transmitted from one point, of the medium, to the next and the disturbance, or 
wave, progresses through the medium. In this process, the resistance offered to deformation 
by the consistency of the medium, as well as to the resistance to motion due to the inertia, 
must be overcome. As the disturbance propagates through the medium it carries along 
various amounts of of kinetic and potential energies. Energy can be transmitted over 
considerable distances by wave motion. The transmission of energy is effected because 
motion is passed on from one particle to the next and not by any sustained bulk motion of the 
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entire medium. Mechanical waves are characterized by the transport of energy through 
motions of particles about an equilibrium position. Thus, bulk types of motion of a medium 
such as those occur, for instance, in the turbulence of a fluid are not classified as wave 
motion. 

As mentioned above, deformability and inertia are essential properties of a medium for the 
transmission of mechanical waves. If the medium were not deformable, any part of the 
medium would immediately experience a disturbance in the form of a rigid body acceleration 
upon the application of the localized excitation. Similarly, if a hypothetical medium were 
without inertia there would be no delay in the displacement of particles and the transmission 
of the disturbance from particle to particle would be affected instantaneously to the most 
distant particle. 

In our presentation of the subject of wave propagation, we consider the solid medium to be 
a continuum. Hence, the mechanics of wave motion in the medium is dealt with from a 
continuum mechanics point of view. The basic concepts of continuum mechanics are briefly 
introduced in Chapter 2. In a continuum, the disturbance is generally considered to spread 
outward, from the source (the original disturbance), in a three-dimensional fashion. During 
their motion, waves propagating in a solid may encounter or interact with boundaries of the 
medium. On striking a boundary, a part or whole of an incident wave may be reflected and 
the mode of propagation ofthe wave may change. 

In recent years, there has been considerable interest in the subject of wave propagation from 
both theoretical and experimental points of view. Such interest was motivated primarily by 
the advancements in the area of testing and measurement techniques. With the recent 
progress in fields such as electronics and laser optics, stress waves of high frequency can be 
now produced and detected easily. This has been particularly pronounced in the important 
domains of ultrasonics and acoustic emission. Another equally important reason for the 
ensuing interest in the subject of wave propagation is the continuous emerging of newly 
developed industrial materials. In this, the study of the phenomenon of wave motion has been 
able to identifY microstructural problems and assist in the development of homogeneous and 
inhomogeneous material systems. 

For a historical background of the subject of wave propagation, the reader is referred to 
Kolsky (1963), Tolosty (1973), Graff(1975) and Davis (1988), among others. For a review 
of the experimental methods that are commonly employed in producing and detecting stress 
waves in solids, reference is made, for instance, to the books by Hetenyi (1950), Dove and 
Adams (1964), Dally and Riley (1965), Keast (1967), and Magrab and Blomquist (1971). 
Comprehensive review articles in this area are due to Hillier (1960), Worely (1962), among 
others. 
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11.2. Elastic vs. Inelastic Waves 

The propagation of stress waves in solids can be divided into two categories, "elastic" and 
"inelastic" waves. When loading conditions result in stresses below the yield point, solids 
behave elastically and obey Hook's Laws, and consequently stress waves are "elastic". As the 
intensity of applied loading is increased, the response of the material is driven out of the 
elastic range to a possible inelastic behavior. The behavior here may involve large 
deformation, internal heat generation, and often failure of the solid through a variety of 
mechanisms. In this context, ''plastic" waves, for instance, can be propagated in a material, 
such as a metal, which exhibits the phenomenon of yielding, when stressed beyond its 
proportional limit. The theory of the propagation of such waves was first considered by 
Donnell (1930). The theory, as originally conceived, was based on a non-linear stress-strain 
relationship which was independent of the rate ofloading. Subsequent experimental studies 
have shown that the time-rate dependence of the stress-strain relation has a considerable 
influence on the nature of wave propagation. Although Malvern (1969) has made an 
important first step in this direction, a theoretical approach which takes such time dependence 
into account leads to rather involved mathematical analysis. The subject of plastic wave 
propagation is dealt with in Chapter 12. 

The mechanical properties of viscoelastic solids, such as plastics and rubber, have been 
studied extensively during recent years, and the subject of rheology is, to a large extent, 
devoted to the description of such viscoelastic behavior. An important development of these 
studies has been a consideration of the propagation of stress waves through such materials. 
The problems involved here are of particular interest, in that one is here dealing with media 
which are "dispersive" with respect to both velocity and attenuation. The study of the 
propagation, reflection and refraction of stress waves under these conditions leads to a 
number of problems which are not only of mathematical and physical interest, but also of 
practical importance in their bearing on the use of high polymers as vibration and shock 
absorbers, and the response of complete viscoelastic structures to rapid mechanical loading. 

The third type of inelastic waves which have been studied are termed "shock waves". This 
class of waves arises, when an instantaneous, very large load is applied to the solid medium 
and lateral movement is restrained. Such conditions are normally encountered in "explosive" 
loading, or during the impact of high speed projectiles. Such shock waves may arise due to 
the fact that the effective bulk modulus of the material increases with increasing pressure. 
The importance of these shock waves lies, on the theoretical side, in obtaining the equation 
of state of solids at pressures which may not otherwise achieved , and, on the practical side, 
in military and mining applications. 

In the case of metals, for instance, as the intensity of the applied load increases, the material 
is driven beyond its elastic limit and becomes plastic. In this state, Two waves propagate in 
the solid: an elastic wave (or precursor) followed by a much slower but more intense plastic 
wave. Ifthe characteristics of the medium are such that the velocity of propagation of large 
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disturbances is greater than the propagation velocity of smaller ones, the stress pulse develops 
a steeper and steeper front on passing through the medium, and the thickness of this front is 
ultimately determined by the constitution of the medium. The shock wave (or steep pressure 
pulse) thus formed differs from the high pressures generated by conventional methods in that 
it relies on the inertial response of material to the developed wave accelerations rather than 
on the structural constraints. 

There are variety of applications of wave phenomena is engineering. First is the area of 
structures where the response of the structures to impact or blast loads are of significant 
importance. Although under transient loads of moderate strength completely elastic 
conditions may prevail throughout the structure and elastic wave theory may very well predict 
the response, the behavior of structures under high intensity loads, severe enough to cause 
permanent damage, would require the application of inelastic wave theories. 

Another domain in the study of materials and structures involving wave phenomena is that 
of crack propagation or the interaction of dynamic stress fields with existing cracks, voids or 
inclusions in a material. Problems in this area are analogous to those pertaining to scattering 
and diffraction problems arising in acoustic and electromagnetic fields. 

The field of ultrasonics represents another major area of application of wave phenomena. 
The general aspects of this area involve introducing a very low energy-level, high-frequency 
stress pulse of 'wave packet' into a material and observing the subsequent propagation and 
reflection ofthis energy. In the majority of applications in this field, the means for introducing 
and detecting the stress waves are based on the piezoelectric effect in certain crystals and 
ceramics, whereby an electrical field applied to the material causes a mechanical strain or the 
inverse effect where a strain produces an electric field. Thus an electrical pulse is capable of 
launching a mechanical pulse. Detection is accomplished when a mechanical pulse strikes a 
piezoelectric crystal and generates an electrical signal. Many applications in ultrasonics are 
based on this reciprocal effect. For example, by studying propagation, reflection, and 
attenuation of ultrasonic pulses, it is possible to determine many fundamental properties of 
materials such as elastic constants and damping characteristics. The field of non-destructive 
testing makes wide use of ultrasonics to detect defects in materials. Meanwhile, the 
phenomenon of acoustic emission is a producer of stress waves and therefore of potential 
application. 

11.3. Elastic Wave Propagation 

In considering wave propagation in three dimensions we can, at a certain instant of time, draw 
a surface through all points undergoing an identical disturbance. As time goes on, such a 
surface, which is called a "wavefront", moves along showing how the disturbance 
propagates. The wavefront is a moving surface which separates the disturbed from the 
undisturbed part of the body. Consequently, particles of the medium that are located ahead 
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of the wavefront are assumed to have experienced no motion, meantime, particles that are 
located behind the front are visualized to have experienced motion and may continue to 
vibrate for some time. In this context, a wavefront is considered to be associated with the 
outward propagating disturbance. The direction of propagation is always at tight angles to 
the wavefront. The field quantities and/or their derivatives are discontinuous at the 
wavefront. 

The normals defining the direction of wave propagation are called "rays". For an h isotropic 
medium, the rays are straight lines. If the wave propagation is limited to a single direction, 
the disturbance at a given instant will be the same at all points in a plane perpendicular to the 
direction of wave propagation. This situation is referred to as ''plane wave". Other cases are 
"spherical waves" and "cylindrical waves", whereby the wave fronts are spherical and 
cylindrical surfaces, respectively. 

Among the most important aspects of wave motion are the reflection and transmission of 
waves. When a wave encounters a boundary separating two media with different properties, 
part of the disturbance is reflected and part is transmitted into the second medium. If a body 
has finite cross-sectional dimensions, waves may bounce back and forth between the bounding 
surfaces. Although it is difficult to trace the actual occurring reflections, it can be noted that 
the general direction of energy transmission is in a direction parallel to the bounding surfaces. 
In such case, it is conventionally said that the waves are propagating in a "waveguide". The 
analysis of harmonic waves in waveguides leads to the notions of "nodes" of wave 
propagation, ''frequency spectrum", "dispersion", and "group velocity". 

When a pulse propagating through an elastic medium encounters an irregularity such as a void 
or an inclusion, the pulse is diffracted. As the wave strikes a crack, for instance, a stress 
singularity is generated at the crack tip which may give rise to the propagation of the crack 
and, thus, to the fracture of the body. The reader is referred, in this context, to Achenbach 
(1973), Gaff(1975), and Miklowitz (1978), among others. 

The challenge in most of these problems stems from the complicated wave reflection, 
refraction and diffraction processes that occur at a boundary or interface in the continuum. 
This complexity evidences itself in the partial mode conversion of an elastic wave upon 
reflection from a traction-free or rigid boundary which converts, for example, compression 
into compression and shear. When there is a neighboring parallel boundary (forming then a 
waveguide), the so-created waves undergo multiple reflections between the two boundaries. 
This leads to dispersion, a further complicating geometric effect, which is characterized by 
the presence of a characteristic length (like the thickness of a plate). In the case of time
harmonic waves, dispersion leads to a frequency or phase velocity dependence on 
wavelength, and is responsible for the change in shape of a pulse as it travels along a 
waveguide. 

If we begin the analysis of wave propagation by considering the real case of finite or bounded 
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solids, more likely we overlook the main concepts of the wave propagation. Therefore, we 
begin with an idealized, simplified case of having disturbance in an infinite elastic solid. Such 
a disturbance is necessarily simpler, because it is free of boundary effects such as reflection, 
refraction, diffraction and dispersion. Hence, the waves comprising this disturbance are 
referred to as "body waves" to distinguish them from "surface" or "interface waves" 
generated at, and propagating along a boundary. It is clear, however, since the displacement 
equations of motion underlie all elastodynamic problems, body waves play a role in all 
solutions. In an unbounded or infinite solid, which is idealized as an isotropic, elastic 
continuum, only~ types of body waves can propagate. This is dealt with in the following 
subsection. 

11.3 .1. WAVE PROPAGATION IN UNBOUNDED ELASTIC SOLIDS 

An unbounded solid is considered to extend indefinitely in the three dimensions of space so 
that the complications which might arise from reflections of waves at the boundaries of the 
medium might be disregarded. 

The equations of motion of a continuum have been derived in Chapter 2, Section 2.4.3. 
These equations, (2.22), were presented in terms of the stress components acting on a small 
parallelepiped of the continuum without the inclusion of the response behaviour of the 
medium. However, in order to employ these equations in the study of wave propagation, one 
may substitute the stress components by the corresponding components of strain through the 
use of the constitutive relationships of the particular medium under consideration. 

Following our presentation in Chapter 6, the stress-strain relations, for an isotropic elastic 
solid, can be expressed in component form as 

I = Ad + 2flEli' 0 22 = Ad + 2flE22, E33 = Ad + 2flE 
(11.1) 

In the above relations, !1= Ekk =En + E 22 + E33, is the "dilatation" which represents the 
change in volume of unit cube of the solid and 'A, fl are the Lame's elastic constants. In the 
theory of elasticity, four elastic (material) constants, not independent, are usually used. These 
are Young's modulus E, Poisson's ratio u, Bulk modulus K and the rigidity (shear) 
modulus which is the Lame's constant fl. From the definitions of these constants and using 
equations (11.1) the following relations between the constants, in the case of an isotropic 
elastic solid, can be determined as 

E (11.2) 

Substituting from the constitutive relations ( 11.1) for the stress components in the equations 
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of motion (2.22), the equation of motion for an isotropic elastic solid, in the absence of body 
forces, can be written in the x1-direction in terms of the strain as 

a2u1 a a a 
p- = - (A..1 + 211e11) + - (11e12) + -(11e13) (11.3) at 2 ax, a~ ~ 

where u1 is the displacement component in the x1-direction. 

Replacing the strain components in ( 11.3) by the corresponding displacement components 

(11.4a) 

from equation (3.21), Chapter 3, it follows that 

where V2 is the Laplace operator defined by 

Similar relations to (11.4a) can be established for the other two components of the 
displacement vector, namely, 

a2u2 aa 
p- =(A+!!)- + 11V2u2 at 2 a~ 

(11.4b) 

and 

(11.4c) 

Equations (11.4) above are the equations of motion, in term of the displacement, for an 
isotropic elastic solid in the absence of body forces. These equations may be expressed 
conveniently in a vector form as 

(11.5) 
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which is the form of the well-known ''Navier's equation of motion". The latter is 
conventionally adopted as the governing equation for the motion of an isotropic, elastic 
solid. Equation (11.5) corresponds to the propagation of~ types of waves through an 
unbounded isotropic, elastic solid; namely, "dilatational" and "rotational" waves. 

Differentiating (11.4a) with respect to x~> (11.4b) with respect to x2 and (11.4c) with 
respect to x3 and adding the resulting expressions, one obtains the following "wave 
equation" for an unbounded isotropic, elastic medium. 

(11.6) 

The above wave equation indicates that the dilatation !J. propagates through the medium 
with a velocity of magnitude [(A.+2Jl)/p]y,. Denoting the latter by c~> then, c1 = [A.+2Jl)/pY' 

In view of equations (11.2), the magnitude of the dilatational wave velocity c1 may be 
expressed further by 

1 = [(A. +ZJl)/pji12 = [ E(l- v) ]112 = [K +4Jl/3 ]11 

p(l +v)(l -2v) p 
(11.7) 

It is noticed from (II. 7) that the velocity c 1 , of a dilatational wave, is dependent only on 
the elastic constants of the isotropic elastic material as well as its density. In an operational 
form, the wave equation (11.6) can be written as 

(11.8) 

where r 12 is a "dilatational wave operator" expressed (see, e.g., Chou,1968) by 

(11.9) 

and !J. = \1 · u = dilatation 

A "dilatational" wave, corresponding to the wave equation (11.8), is also referred to as 
"irrotational", since the propagation of such a wave involves no rotation of an elemental 
volume of the solid. A "dilatational" wave is also known as "bulk wave" or "primary(P) 
wave". 

On the other hand, if we eliminate the dilatation !J. between ( 11.4b) and (11.4c ), that is by 
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differentiating ( 11.4b) with respect to x3 and ( 11.4c) with respect to x2 and subtract, it 
follows that 

This equation can be written as 

where w1 is the rotation about the x1-axis (see Chapter 3). Similar relations can be obtained 
for w2 and w3 (the rotations about the x2- and x3-axis, respectively). 
Thus, in generalized notation, one can write 

(11.10) 

where w = V x w/2 is the rotation vector. 

It follows from (11.1 0) that the rotational wave propagates in an isotropic, elastic solid with 
a velocity magnitude (Jl/p)y,. We denote the magnitude ofthe rotational wave velocity by 
c2, then, 

(11.11) 

It is noticed, from the above expression, that the rotational wave velocity c2 is, similar to 
the dilatational velocity c1, dependent only on the elastic constants as well as the density of 
the material. 

With reference to expressions (1 1. 7) and (1 1.11), it is evident, in the case of an isotropic 
elastic solid, the two velocities of body waves are independent of the frequency. In other 
words, there is no dispersion (change of form) of these waves, i.e., _body waves travel, in an 
isotropic elastic solid without change in form. 

Applying the vector curl operator to (11.5), it can be shown that the vector form of the wave 
equation (11.10) can be expressed as 
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(11.12) 

where r 2
2 is a rotational wave operator ofthe form (e. g., Chou,l968) 

(11.13) 

and w = V x u = rotation. 

A "rotational" wave is also called "equivoluminal" wave, since there is no volume change 
would occur during the wave motion. A rotational wave is also known as "distortional" 
wave or "secondary (S) wave". 

Equation (11.8), or (11.12), is a necessary, but not a sufficient, condition for the satisfaction 
of the Navier's governing equation of motion ( 11. 5). Thus, for every displacement field that 
satisfies (5.5), the corresponding !}. and w will satisfy (11.8) and (11.12), respectively. On 
the other hand, a displacement field with a dilatation satisfying (11.8), or a rotation satisfying 
(11.12) would not necessarily be a solution of the Navier's governing equation (11.5). 

The particle motion in a dilatational wave is longitudinal, i.e., along the direction of wave 
propagation. In case of a rotational wave, the particle motion is transverse, that is 
perpendicular to the direction of propagation of the wave. Experimentally, one would 
generally attempt to generate one type of wave with the exclusion of the other. However, it 
should be emphasized that in the propagation of dilatational waves in an unbounded solid, the 
medium would not be simply subjected to pure compression, but to a combination of 
compression and shear. This is supported by the physical situation and mathematically by the 
appearance of both the bulk modulus and the shear modulus in the expression (11.7) of the 
dilatational velocity; see, for instance, Kolsky (1963). 

11.3.2. IRROTATIONAL AND ROTATIONAL DISPLACEMENT FIELDS 

Consider the displacement vector field u. In dynamic elasticity, u may be decomposed into 
an "irrotational field", say uiR, associated with a scalar potential <!> and a "rotational 
field", uR, associated with a vector potential \jl. Thus, according to Helmholtz theorem (see 
Morse and Feshbach, 1953), for any displacement field, subject to mild continuity and 
boundary conditions, one may find at least one set of functions <!> and \j1 such that 

u = V<j> + Vxw, V·\jl = 0 (11.14) 
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The condition V.ljl=O is necessary to uniquely determine the three components of the 
displacement vector u from the four components of(<!> and ljl). Substituting (11.14) into 
Navier's equation (11.5) yields 

(11.15) 

Every solution of (11.14), or (11.15), is always a solution of (I 1.5). Accordingly, equations 
(11.14) and (11.15) are also governing equations to the induced motion in an isotropic, elastic 
solid and each constitutes an exact equivalence to (11.5); see Chou (1968). A particular class 
of solutions of ( 11.15) is 

(11.16) 

with a particular solution 

(11.17) 

This is with the understanding that the class of solutions presented by (I 1.16) and (11.17) is 
sufficient, but not necessary, for the satisfaction of(11.5). In equation (11.17), r 1

2 and r/ 
are the dilatational and rotational wave operators introduced earlier by equations ( 11. 9) and 
(11.13), respectively. 

An Irrotational Field 
A displacement field, u, is referred to as "irrotational" if 

Vx u = 0; u = u 1R 

For an irrotational wave, one has, following Eqn. (11.5), 

or, alternatively, according to Potential theory, 

UIR = V<l> 

(11.18) 

(11.19) 

(11.20) 

where <I> is a scalar potential function. Equation (I 1.20) implies that, for an irrotational 
wave, the rotational vector w is equal to zero in magnitude. Following (11.17), then, for 
an irrotational field 
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(11.21) 

Accordingly, the scalar potential ¢ is seen to be associated with the dilatational 
(irrotational) part of the disturbance. 

Substituting ( 11.21) into ( 11.4 ), one has, for an irrotational field, 

a2u 
p - 1 = (A. +2!l)'V2u. 

at2 I 

(i= 1,2,3) 

Rotational Field 
A displacement field, u, is called "rotational" if 

\l·u = 0; U = UR 

For a rotational field, the Navier's governing equation (11.5) results in 

r:u = 0 2 

u = 'VxlJI 

(11.22) 

(11.23) 

(11.24) 

(11.25) 

i.e., the vector potential lft is associated with the rotational part of the disturbance. 

The above conditions for a rotational wave translates into that, in this case, the dilatation 
~=0. Hence, the set of equations ( 11.4) reduces, for a rotational wave, to 

(11.26) 

U = UIR + UR (11.27) 

Combining equations (11.14), (11.20) and (1125), it follows that in an isotropic, elastic solid, 
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a displacement field u is decomposed vectorially into an "irrotational field uiR" and a 
"rotational one uR"· Further, in view of (11.17), (11.20) and (11.25), it may be concluded that 
for every displacement field that satisfies (11.5), there exists a set of functions uiR and uR 
such that [see, equations (11.19) and (11.24)] 

(11.28) 

This translates, physically, into the following: 

A disturbance in an isotropic, elastic solid would generate two waves, one dilatational, 
involving no rotation, with velocity c 1 and the other is rotational, involving no volume 
change, that propagates at velocity c 2. The ratio of the two speeds may be expressed, with 
reference to (11. 7) and (11.11), as 

S, = K = ( ~) ~ = [ 2(1- v) ]~, 
c2 1.1 1-2v 

where v= Poisson's ratio. Since 0:,; v:,; 1, it follows that c1 > c2. 

In view of (11.28), the dilatational and rotational waves are not coupled within the 
continuous solid (except perhaps on the boundary where the prescribed boundary conditions 
must be satisfied). 

Table 11.1 summarizes the relationships given in the foregoing, in terms of displacements, 
while Table 11.2 gives such relationships in terms of potentials (see, also, Chou,1968). 

11.3 .3. PLANE WAVES IN UNBOUNDED ELASTIC MEDIA 

Plane waves are propagating disturbances in two- or three-dimensions where the motion of 
every particle in planes perpendicular to the direction of propagation is the same. An example 
of a propagating (three-dimensional) plane disturbance is given in Figure 11.1. As shown in 
this figure, the magnitude of the propagation velocity of the plane is denoted by c while the 
normal to the plane is designated by n. The position of an arbitrary point P on the plane is 
indicated by r. 

For the plane wave illustrated in Figure 11.1, the motion of every particle along the plane is 
defined by 

u · r - ct = constant (11.29) 
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X:J. 

Figure 11.1. Plane wave motion in an unbounded elastic medium. 

Consider now the plane wave 

where A 

u = Af(n·r- ct) (11.30) 

is the displacement vector of the particle along the plane of the wave and f ( ·) 
indicates an appropriate function of the shown argument. Substituting (11.30) 
in the Navier's governing equation of motion, (11.5), it can be shown that 

(11.31) 

Relation ( 11.31) above represents three homogenous equations in the amplitude components 
A~> A2> A3 . This leads, upon expanding the determinant of coefficients, to 

(11.32) 

This equation gives the two roots 
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c, = [A ~2~ r (a) 

(11.33) 

c2 = (~/p)l/2 (b) 

which again are, respectively, the magnitudes of the velocities of dilatational and rotational 
waves. 

Accordingly, plane waves may propagate, without dispersion, at one or the other velocity 
(i.e., c1 or c) in the unbounded, isotropic elastic medium. Reference is made to Table 11.1 
for representative values of these velocities, as calculated for various engineering materials. 

11.3.4. WAVE PROPAGATION IN SEMI-INFINITE ELASTIC MEDIA 

When a stress wave encounters a boundary between two media, energy is reflected and 
transmitted from and across the boundary. On the other hand, if the boundary is a free 
surface, reflection of the waves will be much more pronounced. It is well recognized that a 
characteristic phenomenon of the elastic wave-boundary interaction in solids is that of mode 
conversion. In this, an incident wave, either pressure or shear, on the boundary will be 
converted into two waves on reflection. Such mode-conversion phenomenon along with the 
fact that two types of waves may exist in an elastic solid, as discussed earlier, accounts for 
the relative complexity of wave propagation in solids in general as compared to equivalent 
problems in acoustics and electro-magnetics (e.g., Graff, 1975). 

I //0------------- .,._ ____ ..,. X1 

Figure 11.2. Wave motion in a semi-infinite elastic medium. 
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With reference to Fig. 11.2, we consider, following Graff (1975), plane harmonic waves 
propagating in the half-space x2 > 0. It is assumed that the wave normal n lies in the x1 x2-

plane. This plane will be referred to as the vertical plane while the x1 x3-plane, the surface 
of the half-space, will be referred to as the horizontal plane. Recalling the previous discussion 
concerning the propagation of plane waves in infinite media, Section 11.2.2, it is recognized 
that the particle motion due to dilatation will be in the direction of the wave normal and will, 
thus, be in the vertical plane only. The transverse particle motion, however, is due to shear 
and will have components both in the vertical plane and parallel to the horizontal plane. In 
Fig. 11.2, the normal displacement component is designated by un and the transverse 
components are denoted by llv and u3 which are, respectively, in the vertical and horizontal 
planes. As every particle along the plane of the wave is acquiring the same motion, the 
motion will be invariant with respect to x3 if the wave normal is in the vertical plane. In 
terms of the potentials ¢ and ljr, the governing equations can be expressed as 

_ -aw 1 
u3- --

aXz 

(11.34) 

where Wi (i=1,2,3) are the components of the vector function ljr. In deriving the above 
governing equations both the postulate V . ljr = 0 and the x3-independence of all quantities 
have been used. 

Combining the displacement expressions in (11.34) with the stress-displacement constitutive 
relations for the isotropic elastic solid, the stress components can be established in terms of 
the potentials <I> and ljr, i.e., 
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(11.35) 

with boundary conditions 

0 22 = 0 21 = 0 23 = 0, 'S = 0 (11.36) 

Experimental studies on wave propagation in semi-infinite media may vary considerably in 
scope. Ultrasonic excitation is often used as an impulsive surface force, meantime, photo
elasticity has been conventionally adopted as a recording technique for the patterns of wave 
motion in elastic materials. Dally, Durelli and Riley (1960), for instance, used small explosive 
charges of lead azide (PbN6) to dynamically load a low-modulus urethane rubber plate and 
the dynamic fringe propagation patterns were recorded by a high-speed camera (see, also, 
Dally, 1968 and Graff, 1975). Dally and Riley (1967) used an embedded polariscope 
technique to experimentally study the three-dimensional problem of a point load on half-space 
using a photo-elastic method (see, e.g., Pindera, 1986). 

11.3.5 SURFACEWAVES 

As per our earlier discussion concerning elastic wave propagation in an infinite elastic 
medium, only two types of waves can be propagated, i.e, dilatational (primary, P -) and 
rotational (secondary, S -) waves. In the case of a semi-infinite medium, however, a third 
type of wave may exist. The existence of the three types of waves in a semi-infinite medium 
was first encountered in seismology where it was observed that in an earthquake there were 
two early, rather minor, disturbances as a result of P- and S- waves, but the main damaging 
effect was done by the third shaking. Such a disturbance was not consistent with the elastic 
wave phenomenon in infinite media. This led to the realization of existence of a surface wave 
in semi-infinite media. In case of an earthquake, the relative significance of P- and S- waves 
is considered to be a consequence of volumetric dispersion of energy into the earth's interior, 
but, the significant amount of energy corresponding to the third wave suggested that this 
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wave dissipated its energy less rapidly then the P- and S- waves. This could be rationalized 
by assuming it, the third wave, was basically limited to the surface. The other characteristics 
of the surface wave, other then it is confined to the surface zone, is that the velocity of surface 
wave is less than that ofbody waves, see, e. g., Kolsky (1963). We introduce below two 
types of surface waves; namely, Rayleigh waves and Love waves. 

(A) Rayleigh Waves 
When the solid has a free surface, "Rayleigh" surface waves can also exist. These waves were 
first introduced by Rayleigh (1887), see, also, Lamb (1904), who showed that their effect 
decays rapidly with depth and that their velocity is less than that of body waves c1 and c2. 

It is shown by Kolsky ( 1963) that Rayleigh waves do, in fact, travel with a fraction ~ of the 
velocity c2 of distortional waves where ~ is obtained from the equation 

In the above equation, b is an elastic constant of the material expressed by 

b = [(I- 2v)/(2- 2v)]112 

where u is Poisson's ratio. 

(11.37) 

(11.38) 

In Rayleigh waves, the particle motion is parallel to the direction of wave propagation and it 
is in a plane perpendicular to the surface containing the waves during travel. 

In case of an elastic solid, the velocity of a "Rayleigh" surface wave is independent of the 
frequency and depends, similar to the body waves, on the elastic constants of the material. 
In other words, there is no dispersion (change of form) of these waves. 

It was Lord Rayleigh the first to investigate this type of surface wave in which the amplitude 
of the wave decays exponentially with depth, from the surface to the medium interior. 
Rayleigh waves spread only in two dimensions (see, e.g., Davis, 1988). It was anticipated by 
Rayleigh that waves of this type might approximate the behavior of seismic waves observed 
during earthquakes. We follow, below, the model of Achenbach (1973) to determine the 
displacement and velocity of Rayleigh waves. 

The criterion for Rayleigh surface waves is that the displacement decays exponentially with 
distance from the free surface. Thus, we consider components of the form 

-bx 
u1 =Ae 2 exp [ik(x1 -ct)] (11.39a) 

-bx 
u2 =Be 2 exp [ i k( x1 - ct)] (11.39b) 

(11.39c) 
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The real part of b is supposed to be positive, so that the displacements decrease with 
increasing x2 and tend to zero as x2 increases beyond bounds. 

Combining Equations (11.39) with the equation of motion (11.5) yields two 
homogeneous equations for the constants A and B. A non-trivial solution of this system of 
equations exists ifthe determinant of the coefficients vanishes, which leads to the equation 

(11.40) 
The roots of (11.40) are 

b=k[l-~l~ I 2 ' 
CL 

It is noted that b1 and ih are real and positive ifc<er<G_, and if positive roots are considered. 

The ratios (B/ A) corresponding to b1 and b2 can now be computed as 

Returning to Equations (11.39), a general solution of the displacement equations of motion 
may, thus, be written in the form 

(11.41) 

u2 = - -. A1 e 1 +-~ e 2 exp [ ik(x1 - ct)]. [ bl -b~ ik -b~] 
Ik b2 

(11.42) 

2b A +[2-~lk 2 ~=0 I I 2 b 
CT 2 

[ c2] ~ 2-- A+2b-=0. 2 I 2 b 
CT 2 
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The constants A1 and A2 and the phase velocity c have to be chosen such that the stress 
tensor components o22 and o21 vanish at x2=0. By substituting Equations (11.39), (11.41) 
and (11.42) into the expressions for o22 and o21 at x2 = 0, we obtain after some manipulation 

For a non trivial solution the determinant of the coefficients of A1, A2 must vanish, which 
yields the following well-known equation for the phase velocity of Rayleigh waves: 

(11.43) 

It is noted that the wave number does not enter in (11.43). Thus, surface waves at a free 
surface of an elastic half-space are thus nondispersive. 

Since (11.43) is an equation for c2 , the two roots are each other's opposite. As noted earlier, 
Eq. (11.43) shows that the roots may be expected along the real axis for- Cr < c <cT. 
Obviously, only the positive real root is of interest. The roots for c2 are usually computed by 
rationalizing (11.43). 

Denoting the phase velocity of Rayleigh waves by~, Eqn.(11.43) can be considered as an 
equation for cR I cT, with Poisson's ratio v ( 0 ~ v ~ 0.5) as independent parameter. 

A good approximation of cR can be written as 

0.862 + 1.14v 
CR = 

1 + v (11.44) 

As v varies from 0 to 0.5, for most metals, the Rayleigh wave phase velocity increases 
monotonically from 0.862 Cr to 0.955 cT. 

Given suitable generating conditions, surface waves as well as body waves are generated at 
a bounding surface. For a two-dimensional geometry the surface waves are essentially one 
dimensional, but the body waves are cylindrical and undergo geometrical attenuation. Thus, 
at some distance from the source the disturbance due to the surface wave becomes 
predominant. 

Rayleigh waves have been studied in great detail and they have found several applications. 
The attractive features are the absence of dispersion and the localization of the motion in the 
vicinity of the surface. For further study on the subject matter, the reader is referred to 
Viktorov (1967) and Graff(1975), among others. 
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(B) Love Waves 
The "Love" wave is a shear surface wave confined to a relatively shallow zone. Recalling our 
earlier discussion, for Rayleigh waves, the material particles move in the plane of propagation. 
Thus, for propagation in the x1-direction along the surface of the half-space x2 ~ 0, the 
displacement u3 vanishes for classical Rayleigh waves. 

The question may now be raised whether surface waves with displacements perpendicular to 
the plane of propagation, the plane x~>x2 , are possible in a homogeneous isotropic linearly 
elastic half-space. We recall that the S-waves are governed by the equation: 

a2 u3 a2 u3 1 a2 u3 
--+--=---

2 2 2 a 2 ax1 a~ CT t 
(11.45) 

A solution of(11.49), representing a surface wave, is written in the form 

-bx 
u3 =Ae 2 exp [ik(x1 -ct)], (11.46) 

where the real part of b must be positive. By substituting (11.46) into (11.45) we find 

b=+-r :.Jl (11.47) 

For a free surface, the boundary condition at x2 = 0 is 

(11.48) 

The boundary condition (11.48) can, however, be satisfied only if either A=O or b=O. Neither 
case represents a surface wave. 

Experimental data, particularly as gathered from seismological observations, have, however, 
shown that surface waves may occur along free surfaces. An analytical resolution of this 
question was provided by Love, who showed that such waves are possible in the half-space 
covered by a layer of a different material (e.g., Ewing eta/., 1957). 
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11.4. Reflection and Refraction of Waves at a Plane Interface 

The presence of a discontinuity in the material properties generally produces a significant 
influence on systems of wave propagating through the medium. Consider, for example, the 
propagation of plane harmonic waves in an unbounded medium consisting of two joined 
elastic half-spaces of different material properties. In such a composite medium, systems of 
plane waves can be superposed to represent an incident wave in conjunction with reflections 
and refractions at the interface between the two media. The wave which emanates from an 
infinite depth in one of the media is called the incident wave. An incident wave on an 
interface would result in additional reflected and refracted waves in the region. For the 
special cases of an elastic half-space which adjoins a medium which does not transmit 
mechanical waves, the system of waves consists of incident and reflected waves only. In 
general, all media transmit waves, but, for practical purposes, refraction of elastic waves at 
an interface of a solid elastic body with air may be neglected. In this case, a reflection of plane 
waves only at the free surface may be considered. 

Basically, as mentioned earlier, two types of body elastic waves may be propagated through 
a solid medium; namely P-ans S-types of waves .. It is found that, when a wave of either type 
impinges on a boundary between two media, both reflection and refraction take place. In this 
section, we study the reflection of both the dilatational and distortional waves at free 
boundary and also reflection and refraction of these two waves at an interface between two 
media, whereby each case is reviewed separately. For further studies on this context, the 
reader is referred to Ewing eta!. (1957), Kolsky (1963), Kinslow (1970), Achenbach (1973), 
Tolstoy (1973), Eringen and Suhubi (1975), Graff (1975), Miklowitz (1978), Miklowitz, 
and Achenbach (1977), Davis (1988) and McCarthy and Hayes (1989) 

11.4.1. DILATATIONAL WAVES AT A FREE BOUNDARY 

By Free Boundary we mean a surface in vacuum when there can be no refracted waves. Fig. 
11.3 shows the reflection of a dilatational wave at a free surface. In this figure, a, is the angle 
of an incident dilatational wave (of an amplitude A1). Meantime, a2 is the angle of the 
reflected dilatational wave (with an amplitude A2). Let~, P2 represent the amplitude and the 
angle of the reflected distortional wave. As shown in Fig. 11.3, the direction of propagation 
ofthe incident dilatational wave is in the x1 x2 plane making the angle of incidence a, with the 
x1- axis, whilst, the free boundary is the x2 x3 plane. The following relations between the 
various angles of incidence and associated with wave velocities may be written (see, e.g., 
Kolsky, 1963) , 

(11.49) 

Thus, 
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sin a 1 

sin ~2 

(A1 +~)cos 2 ~2 sin a 1 -~sin ~2 sin 2 ~2 = 0. 

(11.50) 

(11.51) 

Thus, when a dilatational wave is incident on a free surface with an angle a, two waves are 
generated on reflection: one is a dilatational wave reflected at an angle equal to the angle of 
incidence a, while the other is a distortional wave reflected at a smaller angle f3 where sin 
f3/sin a= cTICt. 

Dilatational wave 
(incident) 

Distortional wave 
(reflected) 

Dilatational wave 
(reflected) 

Figure 11.3. Reflection of a dilatational wave at a free surface. The face 
boundary is the X2 -X3 plane. 

11.4.2 DISTORTIONAL WAVES AT A FREE BOUNDARY 

In a similar analogy to the above presentation, if a distortional wave is incident on a free 
surface at an angle y, Figure 11.4, both distortional and dilatational waves are generally 
reflected. The distortional wave is reflected at the same angle y while the dilatational wave 
is reflected at a generally smaller angle o where sin y/sin o =~!Ct. 
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Dilatational wave 
(incident) 

Dilatational wave 
(reflected) 

Distortional wave 
(reflected) 

Figure 11. 4. Reflection of a distortional wave at a free boundary. 

11.5. Wave Propagation in Bounded Elastic Solids 

105 

In this section, the propagation of stress waves along a cylindrical bar will be considered first, 
as this is a problem which has been investigated most fully theoretically and on which there 
are also some experimental data. Before examining the problem in terms of the exact elastic 
equations, we shall consider the simple treatment which applies to the propagation of waves 
the lengths of which are large compared with the diameter of the bar. 

There are three different types of vibration which occur in thin rods or bars; these are 
classified as "longitudinal", "torsional", and "lateral". 

In longitudinal vibrations, elements of the rod extend and contract, but there is no lateral 
displacement of the axis of the rod. In torsional vibrations, each transverse section of the rod 
remains in its own plane and rotates about its center, with the axis of the rod remaining 
undisturbed. Meanwhile, lateral vibrations correspond to the flexure of portions ofthe rod, 
with elements of the central axis moving laterally during the motion. 

In this section the subject of stress wave propagation in bars is first discussed. Then, the 
approximate theory of stress wave propagation in plates is briefly reviewed. For further 
information on the subject matter, the reader is referred to Kolsky (1963), Graff(1975), 
Miklowitz (1978) and McCarthy and Hayes (1989). 

11.5.1. STRESS WAVES IN RODS 

In all cases oflongitudinal, torsional and lateral (flexural) stress waves in bars the approximate 
description of wave motion has been used by following an approximate solution such as the 
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one developed by Achenbach (1973). In this case, one can find the velocities of different type 
ofwaves in a long rod. The exact treatment of harmonic wave motions in an elastic circular 
cylinder is already rather complicated. For a cylinder with other than circular or an elliptical 
cross section, however, it becomes rather impossible to carry out an exact solution. Even for 
a strip of rectangular cross section whose lateral surfaces are free of traction it is not possible 
to analyze general harmonic wave motions rigorously within the context of the linear theory 
of elasticity (Davis 1988). For this reason, simplified analytical models have been proposed 
that provide an approximate description of wave motions in rods of rather arbitrary cross 
section. In this section, we review some models that are commonly used. These models are 
based on a priori assumptions with regard to the deformation of the cross-sectional area of 
the rod, which simplify the description of the kinematics to such an extent that the wave 
motion can be described by one-dimensional approximate theories. Further, for propagation 
of time-harmonic waves, it was found that the approximate theories can adequately account 
for the dispersive behavior of the lowest axisymmetric and flexural models over a limited but 
significant range ofwave-numbers and frequencies. 

The governing equations can be obtained either by using variational methods or by 
straightforward momentum considerations of an element of the rod. The latter approach , 
however, has the advantage that the physical concepts are conveyed more clearly. For the 
more complicated theories it is, however, easier to employ the assumed displacement 
distributions to compute the corresponding kinetic and strain energies for an element of the 
rod, whereupon Hamilton's principle can be applied to obtain the governing equations. In the 
following analysis, we present a brief derivation of the equations for the Timoshenko model, 
and we state only the governing equations for some other models. In all cases, the 
assumption that the wavelength is long compared to the lateral dimensions of the rod would 
prevail. 

11.5.2. LONGITUDINAL WAVES IN RODS 

Longitudinal stress waves are also called extensional waves. In an extensional wave motion, 
the dominant component of the displacement is in the longitudinal direction. Based on the 
assumption that the cross-sectional area of the rod remains plane, it can be shown that 
consideration of the forces acting on an element leads to the equation 

(11.52) 

where, 
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(11.53) 

Eq. (11.52) predicts that extensional harmonic waves in the rod are not dispersive. 

11.5.3. TORSIONAL STRESS WAVES IN RODS 

In the approximate theory, it is assumed that transverse sections remain plane and that the 
motion consists of a rotation of the sections about the axis. This leads to a wave equation for 
the angle of rotation with a propagation velocity. 

(11.54) 

In the above equation, K is the radius of gyration of a cross section ofthe rod about its axis, 
A is the cross-sectional area and Cis the torsional rigidity of the rod. 

11.5.4. FLEXURAL STRESS WAVES IN RODS 

In the approximate theory of flexural motion of rods of an arbitrary but uniform cross section 
with a plane of symmetry, it is assumed that the dominant displacement component is parallel 
to the plane of symmetry. It is also assumed that the deflections are small and that cross
sectional areas remain plane and normal to the neutral axis. For a beam, free of lateral 
loading, the equation of motion is 

(11.55) 

where w is the deflection, I is the moment of inertia ofthe cross-sectional area A about the 
neutral axis. Substituting a harmonic wave, the phase velocity is expressed as 

(11.56) 

Thus, the phase velocity is proportional to the wave number, which suggests that (11.56) 
cannot be correct for large wave numbers (short waves). For a circular cylindrical rod, Eqn. 
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(11.56) reduces to 

1 E -( ) 

I 

c = 2 p 2 ka. (11.57) 

which results in the following frequency 

1 E -( ) 
I 

w = 2 p 2 k2 a. (11.58) 

11.5.5. STRESS WAVES IN A LONG BAR 

In this section, elastic stress wave motion in a long bar is considered in view of the work of 
Zukas eta!. (1982). 

In the previous sections, we learned that when a material is stressed with a suddenly applied 
load, the deformations and stresses are not transmitted immediately to all parts of the body. 
Thus, remote portions may remain undisturbed for some time. Deformations and stresses 
progress through the material in a form of one or more stress disturbances which travel, in 
a perfectly elastic material, at a finite velocity form the area of application of the load, this 
velocity being a characteristic of the material. Such a suddenly applied, or impulsive, load 
may be produced by a sharp mechanical blow, a detonating explosive, or by impact of a high 
velocity projectile. Regardless of the method of application, the consequent stress 
disturbances have identical properties. 

In the elementary case, we consider two types of stress pulses generated by an impulsive load. 
The first, the longitudinal wave, is also called a dilatational, irrational, or primary (P) wave, 
the terms being synonymous. In a longitudinal pulse, the particle motion is parallel to the 
distortional, rotational, secondary (S), or shear wave, the particle motion is normal to the 
direction of propagation of the pulse and the strain is a shearing strain. 
direction of propagation ofthe pulse and the strain is pure dilatation. In a transverse wave, 
otherwise called a 
Two velocities must be considered: the velocity of propagation c of the disturbance and the 
particle velocity v. 

Particle velocity is defined as the velocity with which a point in the material moves as the 
disturbance displaces across it. Both the velocity of propagation c of the disturbance and the 
particle velocity v enter into the governing equations in distinctly different ways as dealt with 
in the following section. 
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11.5.6. GOVERNINGWAVEEQUATIONS 

The relationship between the longitudinal stress at a point in a body and the longitudinal 
particle velocity vL at the point is expressed, in view Newton's second law, as 

(11.59) 

Here, FL is the longitudinal force acting on a given cross section, dt is the time the force acts, 
m is the mass it acts against, and vL is the velocity imparted to m by FL. Since 

FL 
o=-

A (11.60) 
m=pAdl 

where dl is the distance the pulse has moved in time dt, equation ( 11. 78) can be written as 

or 

oadt=pAdlduL 

dl 
o=p-du 

d t L 

but dl I dt is just the speed of the pulse ~. so that 

In a similar manner it can be shown for the transverse pulse that 

(11.61) 

(11.62) 

(11.63) 

where 1: is the shear stress, Cr is the velocity of propagation of the transverse disturbance, 
and !l Uris the change in particle velocity due to shear. 

11.5. 7. REFLECTION OF WAVES 

Any elastic wave will be reflected when it reaches a free surface of the material in which it is 
traveling. The simplest case occurs when the wave strikes the surface normally. In the case 
of a longitudinal wave, since the stress normal to the surface, at the surface, must be zero, 
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the reflected pulse must be opposite in sense to the incident pulse (a compression wave would 
be reflected as tension and vice versa). To illustrate the situation, one considers the 
displacement due to the incident pulse to be u1 = f(x1 - ct) moving in the positive x1 direction. 
After impingement on a free surface, a reflected wave moves in the negative x1 direction. Let 
the displacement for the reflected wave be of the form uR = g (x1 + ct). At the free boundary, 
the net stress must be zero. 

Since the stress is given by 

(11.64) 

or 

a = E E = E (a ul I a XI) 

aNET = E [ ( (I - ct) + g' (I + ct)] = 0 
(11.65) 

Hence, the shape of the reflected pulse is the same as the shape of the incident pulse, but it 
is opposite in sign. 

f'(l-ct)=-g'(l+ct) 

The net particle velocity may be, also, found by superposition. Thus, 

au au 
u =u +u =--11 +___l.! 

NET l R at at 

= c(- ( + g,) 

=2cg 

at x 1 =I 

(11.66) 

(11.67) 

Hence, the particle velocity and also the displacement in a region where the incident and 
reflected pulses overlap are twice that for either pulse. At a fixed boundary, we require the 
displacement and particle velocity to vanish. Thus, 

UNET = - C f' (J - ct) + cg, (I + ct) 
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or 

((I - ct) = g ·(I+ ct) (11.68) 

The net stress is doubled at a fixed boundary, whilst the net displacement and particle velocity 
are zero. 

a -- E ( a u, + a uR) 
NET OX OX 

= E [ ( (!- ct) + g' (I+ ct)] 
(11.69) 

=2E((l-ct) 

11.5.8. STRESS WAVES IN BARS OF DISCONTINUOUS CROSS SECTIONS 

Following Zurkas eta!. (1982), we consider a bar with a change in cross section, as illustrated 
in Figure 11.5 Assume that a disturbance at the left end of the bar has caused an elastic 
compressive pulse, with an intensity a, to propagate to the right. At the interface with the 
second portion of the bar, with different section, the wave will be partly transmitted and 
partly reflected. Let the transmitted wave amplitude be aT, and the reflected wave amplitude 
be oR Two conditions must be satisfied at the interface: 

1. The forces at the interface, in both portions of the bar. 
2. Particle velocities at the interface must be continuous. 

Taking oR and aT to be compressive, condition 1 above gives 

A1 (a 1 + oR) = ~ aT 

where AI> A2, are the respective cross-sectional areas. Condition 2 above gives 

or, using a= pcv 

Solving for oR and aT in terms of o1, gives 

(11.70) 

(11.71) 

(11.72) 
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(11.73) 

(11.74) 

(11.75) 

Consider several implications of the above expressions: 

1. If the materials in both bars are identical then p1 = p2 and c1 = c2 . Then, 
If A2 > AI> then aT and oR will be of the same type. If A2 < A1 , then, aT and oR will 
be of opposite sign. 

2. If A2 I A1 - 0, the rod is effectively free and <Ja - -~. If A;. I A1 - co, the rod is fixed 
and bR - br. bT - 0. 

3. For no wave reflection to occur from the discontinuity in the bar, 
0 R = 0 :. ~ P2 c2 =AI P1 cl and 0 T = 0 1 JE2 P2 I El P1 (11.76) 

4. In (11.76), the coefficient of o1 is positive. This means that tension will be 
transmitted as tension and compression as compression. For a situation wherein 
p2 c2 » p1 c1, or medium 2 is much more rigid than medium 1, Figure 11.5, the stress 
of the transmitted pulse is approximately twice the stress of the incident wave. 

5. In (11.76), the coefficient of Or. can be positive or negative depending on if 
p1 c1 < p2 c2. If the coefficient is negative, an incident compression-stress is reflected 
as a tensile stress and vice versa. If the coefficient is positive, the incident 
compressive stress is reflected as a compressive stress. These results are in complete 
agreement with the laws of conservation of momentum and kinetic energy. 
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Figure 11.5. Wave reflection and transmission at changes in cross section. 

11.5.9. STRESS WAVES IN PLATES 

In this section, we briefly review the elastic stress wave propagation phenomena in plates. The 
reader is referred, in this context, to the work of Rayleigh (1887), Lamb (1917), Graff (1975), 
Miklowitz and Achenbach (1977), and McCarthy and Hayes (1989). 

Similar to the case of elastic wave propagation in rods, we have three different types of waves 
propagating in a plate, i.e., "longitudinal", "torsional" and "flexural" waves. When we 
deal with a semi-infinite plate, the wavelength is long compared with the thickness of the 
plates, and the longitudinal wave velocity CL is expressed by 

(II. 77) 

The increasing attention to the dynamic behavior of materials and evermore increasing of 
application of ultrasonics are two very important reasons behind the significance of the wave 
propagation phenomenon, but, there are, also, a number of other reasons: 

First, experimental methods for the generation and detection of high frequency mechanical 
waves have become available only with the advent of electronic techniques and of high speed 
photographic recording apparatus. Secondly, the appearance of new materials, such as 
plastics and polymeric material systems in general, the mechanical properties of which depend 
very markedly on the time-rate ofloading, has led to studies of the mechanical response of 
such materials to high frequency mechanical waves, with a view to correlating their 
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microscopic structure with their mechanical behavior. Second, engineers have become more 
and more concerned with the response of conventional engineering materials, such as metals, 
to large impulsive forces applied for very short periods of time. This interest arises both in 
military developments and in problems of impact and of shock absorption in engineering 
structures. A proper understanding of all these problems requires a knowledge of the nature 
of stress wave propagation in engineering materials. 

A number of distinct types of wave propagation in elastic solids have been investigated and, 
although the phenomena observed in practical situations do not always conform to the 
idealized mathematical models, the theoretical work has received experimental confirmation 
in a number of the problems, and the experiments have, in tum, shown effects which have led 
to further theoretical advances Kolsky (1963). That gives us enough justification for the 
idealization and assumptions made in the analysis pertaining of wave propagation phenomena. 
The assumptions of being continuous, isotropic, homogenous and perfectly linear elastic 
material are never true for media, but in order to prevent very complicated problems that do 
not have an easy mathematical solution we make those idealizations. 

The physical explanation of the propagation of a wave lies in the interaction of the discrete 
atoms of a material. But two properties of a medium, i. e., de formability and inertia, are 
essential for the transmission of a mechanical disturbance. All real materials are deformable 
and possess mass and consequently all real material transmit mechanical waves. The inertia 
of a medium first offers resistance to motion, but once the medium is in motion inertia, in 
conjunction with the resilience of the medium tends, to sustain the motion~ If, after a certain 
interval the externally applied excitation becomes stationary, the motion of the medium will 
eventually subside due to frictional losses and a state of deformation will be reached. The 
importance of dynamic effects depends on the relative magnitudes of two characteristic times: 
the time characterizing the external application of the disturbance and the characteristic time 
of transmission of the disturbance across the body. In other words, for low intensity 
excitations, both the geometry of the entire structure as well as the nature of the material from 
which it is made play a major role in resisting external forces. As loading intensity increases, 
the response tends to become highly localized and is more affected by the constitution of the 
material in the vicinity of load application than the geometry of the total structure. A 
description of the phenomena in terms of elastic, inelastic, and shock wave propagation 
becomes appropriate. 

Thus, we have to know, indeed, when we can analyze the behavior of a material simply by 
using strength of material and dynamic theories and under which circumstances we have to 
use wave propagation phenomena to analyze the behavior of materials. We know that in fact 
every process of loading is a dynamic case involving wave propagation phenomena. After 
every loading, disturbances are produced at the place where loading is applied and then 
propagate toward other areas in the medium. Then, propagation and reflection of waves in 
the medium continue until the medium reaches the state of static equilibrium. Ifthe rate of 
applying the load is small compared with the velocity of wave propagation, static equilibrium 



www.manaraa.com

115 

prevails. On the other hand, if loading is applied at a rate that is fast enough if compared with 
the wave propagation velocity, then, we have to consider using wave propagation analysis in 
determining the response of the medium. At this stage we could clarifY the point with an 
example; suppose we have a medium subjected to an external load F(t) applied at point P. We 
wish to determine the deformation and the distribution of stresses throughout the medium. 

We know that we have different types of waves propagating inside the media such as 
dilatational and distortional waves but we also know that the highest velocity is that of the 
dilatational wave CL. Thus, if the external disturbance is applied at time t=O, the disturbed 
regions at times t1 and t2 are surrounded by spheres centered at point P with radii ~ t1 and 
~ ~, respectively. Therefore, the entire body is disturbed at time, r = r I cL, where r is the 
largest distance within the body , measured from point P. Let us assume that over a time t. 
, the loading F(t) has drastically changed. In this case, the dynamic effect are important ift. 
and the rl~, are of the same order of magnitude. If t. » r I cL the problem is quasi-static 
rather than dynamic in nature and inertia effects can be neglected. Thus, for bodies of small 
dimensions, a wave propagation analysis is called for ift. is small. If the excitation source is 
removed, the body returns to rest after a certain time. For excitation sources that are applied 
and removed, the effects of wave motion are important if the time interval of application is 
of the same order of magnitude as the characteristic time of transmission of a disturbance 
across the body. For bodies of finite dimensions, this is the case for loads of explosive origins 
or for impact loads. For sustained external disturbances, the effects of wave motions need 
be considered if the externally applied forces are rapidly changing with time. 

A very important parameter in wave propagation, is the relative velocity of different wave 
types. The velocity of a dilatational wave has the largest magnitude, meantime, the 
magnitude of a Rayleigh wave is less than that of a distortional wave. The significant point 
is that all of these wave velocities are functions solely of the elastic constant of the medium, 
and, thus, they are characteristics of the mechanical behavior of the medium. 

11.6. Study Problems 

1. What is meant by an "inelastic wave" ? Describe briefly why it is different from an 
"elastic wave". 

2. Describe briefly the following terms: 
Waveguide, node,jrequency spectrum, dispersion, and group velocity 

3. Derive, in a vectorial form, the expression for the "equation of motion", in terms of 
the displacement, for an isotropic elastic material. 

4. Based on Problem 3 above, derive the "wave equation" for an unbounded isotropic, 
elastic medium. 
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5. Derive the governing equation of motion for a homogeneous rod with an elastic 
modulus E and a constant density p. 

6. Solve problem #5 above for an inhomogeneous rod with the elastic modulus varies 
as E =Eo (1 +x} and a constant density p. 

7. Based on Problem 4 above, derive the expressions, in terms of the material elastic 
parameters, for both the "dilatationaf' and "rotationaf' wave-velocities. Explain 
briefly the difference in physical significance of the two velocities. 

8. Based on Problem 7 above, search the values of the material parameters and 
determine the magnitudes, of both wave velocities for the following materials: 
Aluminum, copper, lead, magnesium, nickel, silver, tin, tungsten and zinc. Use SI 
units, and present your results in a an appropriate table format. 

9. What is meant by "rotationaf' and "irrotational' fields ? Use appropriate 
mathematical derivations to illustrate your explanation. 

10. Explain briefly the difference in physical significance of a "dispersive wave" vs. 
"nondispersive wave". 

11. (a) What is meant by a "surface wave"? . 
(b) Comment briefly on the validity of the following expression: "Surface waves at a 
free surface of an elastic half-space are nondispersive". 

12. Explain briefly the difference in physical significance between "Love" and" Rayleigh" 
surface waves, then, Comment on the validity of the expression: "Love waves are 
dispersive, as opposed to Rayleigh waves which are not dispersive". 

11.7. Problems 

The following problems may require some literature search by the student for information 
not directly available within the material presented in the context of this Chapter. 

13. Comment, with an analytical proof, on the following statement: "The Love waves are 
dispersive, as opposed to Rayleigh waves which are not dispersive". 

14. Comment, with an analytical proof, on the following statement: "An elastic wave 
reflected from a fixed-end bar is entirely unchanged in shape or intensity". 

15. Determine the resulting wave propagation in rod oflength /,which is fixed at one end. 
The rod is subjected to a compressive load P; which is then suddenly removed. Plot 
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the displacement versus time for the end of the rod. Assume the material of the rod 
to be linear elastic. 

16. Derive the governing equations and boundary conditions for a plate, as based on 
energy considerations. 

17. Derive the frequency equation for the natural frequencies of a clamped, circular plate. 

18. Determine the expression for the dilatation in the case of a plane harmonic dilatational 
wave propagating in an infinite medium. 

19. Derive the frequency equation for pure torsional wave in a composite rod. The latter 
is composed of an inner cylinder of radius, which is attached to an outer shell of an 
inner radius a and outer radius b. Assume that the shear wave velocity in the inner 
cylinder to be greater than that in the shell. 

20. A semi-infinite plate has traction-free lateral surfaces on x=± a and a stress-free edge 
at y=b. Investigate the reflection of an incident longitudinal plane wave from the 
boundary. Also, determine the ratios of the pertaining reflection coefficients for the 
various wave components. 
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TABLE ll.l. Wave propagation in an isotropic, elastic (unbounded) solid. Pertaining relations in terms of 
displacement. 

Displacement field u, 
General governing equation: 

p a2 u 
Navier's --=11V2 u +(A+Jl)VV·u 

at 2 

Two propagating waves: 

Dilatational (Irrotational); (Urn., c1) 

Rotational (Distortional); (oR, c2) 

Necessary and sufficient relations for the satisfaction of Navier's governing equation (above): 

Necessary but not sufficient relations for the satisfaction of Navier's governing equation: 

Dilatation ~: 

[v2 -_1 _1 ]u = 0 
2 a 2 IR c, t 

[

"12 __ 1 u =0 
1 R 

c2-
2 at 2 
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Rotation w: 

w=vxu 

Sufficient but not necessary relations for the satisfaction of Navier's governing equation: 

Dilatational (Irrotational) 

Rotational (Distortional) 

where 

vxu=O; 

2_ A.+2fl _ E(l-v) 
c1 --p-- p(l +v)(l-2v) 

4 
K+- fl 

3 

p 
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TABLE 11.2. Wave propagation in an isotropic, elastic (unbounded) solid. Relationships between Navier's 
equation and other related governing equations in terms of potential. 

General governing equation: Navier's 

Displacement field u(<j>,lJr) 

Necessary and sufficient relations for the satisfaction of Navier's governing equation (above): 

u = Y'<l> + Y'x lJr; Y' ·lJr = 0 

Necessary but not sufficient relations for the satisfaction of Navier's governing equation: 

[v
2 - _ 1 _f_l<l> = O;[v2 - _ 1 _f_llJr = 0 

c 2 ot 2 c 2 ot 2 
1 2 

where 2 A.+ 211 E(1 - v) 
c1 =-p- = p(l +v)(1-2v) 

4 
K+-Jl 

3 

p 
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CHAPTER12 

DYNAMIC PLASTIC BEHAVIOUR 

12.1. Introduction 

In dealing with static plastic problems, we emphasize that the duration of the experiment is 
long enough so that the occurring deformation in the material can be considered to be "time
independent'. 

In a dynamic experiment, however, the time duration is very short, to the extent that a 
relaxation phenomenon might occur. In this context, the length of the period of the dynamic 
plastic experiment may be compared with the relaxation time of the body considered 
(Cristescu, 1967). Due to such viscous flow effect, it is often appropriate to include the so
called "rate-effects" when dealing with dynamic plastic problems. The magnitude of the strain 
rate at which a given material commences to be rate sensitive varies from a material to 
another. For a large group of metals, this limiting rate of strain seems to be Iff sec·1• 

In the present chapter, we deal with the plastic response of engineering materials under 
dynamic loading, whereby a rate-effect phenomenon might be occur in the material and, 
hence, the inertia forces would be included in the equation of motion. 

The first research contributions in the field of dynamic plasticity include the work of both J. 
Hopkinson (1872) and B. Hopkinson (1905). Other important contributions in the field were 
followed during the period 1930 to 1950 (e.g., Donnell, 1930). 

The study of dynamic plasticity is of particular interest in a large number of technical fields, 
e.g., high velocity forming of metals, ballistics in general, response of soils under dynamic 
loads, etc. All such applications have significantly contributed to the development of the 
pertaining theory. In this context, the reader is referred to the books, for instance by, 
Goldsmith (1960) and Cristescu (1967). Reference is, also, made to Davies (1953, 1956), 
Kolsky (1953), Cristescu (1960a&b, 1970, and 1972), Hopkins (1960, 1961), Craggs (1961), 
Olszak et al. (1963), and Cristescu and Bell (1970), among others. 

12.2. The Dynamic Plasticity Problem 

The one-dimensional problem in dynamic plasticity is defined as the one in which, in a strict 
sense, one component of the stress and of particle velocity, as well as a single spatial 

124 
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coordinate are involved. In such case, a one-dimensional stress-strain relation is used. Thus, 
as dealt with below, one arrives at a single partial differential equation of the first or second 
order. 

The problem of propagation of elastic-plastic waves in thin rods was the first one-dimensional 
problem to have received most attention in the realm of dynamic plasticity. In this context, 
special consideration has been given to the "unloading" aspect of the problem. The latter is 
the most difficult point to deal with as only numerical methods have been traditionally 
successful in locating the "loading/unloading boundary". In this, the reader is referred to 
Ericksen (1955), Hill (1961), Thomas (1961), and Mandel (1962, 1964), among others. For 
the study of other categories of one-dimensional problems, e. g., problems that involve 
spherical symmetry, but, one component of particle velocity, reference is made to Hunter 
(1957), Cristescu (1960 a&b), Goldsmith (1960, 1963), Hopkins (1960), Chadwick (1962), 
Olszak and Perzyna (1962), Perzyna (1962), Szczepinski (1964) and Wierzbicki (1963), 
among others. 

In order to make the transition to more general multi-dimensional problems, one may 
consider: 

First, those problems in which several components of the stress and of the velocity are 
involved, but in which there is a degree of symmetry so that a single spatial coordinate 
is sufficient to describe the motion. Here, one uses a time-independent constitutive 
equation that is expressed in a finite form. For such class of problems, the number of 
equations involved is, in general, manageable, and the problem can be solved without 
too much difficulty. 

On the other hand, if the viscosity of the material cannot be neglected, the 
constitutive equations become time-dependent and are often expressed in a differential 
form. Thus, the pertaining dynamic plastic problem becomes more involved. 

In the two cases mentioned above, several plastic waves, travelling with variable velocities, 
may be involved. These waves could be "couplet!' or "partially couplet!'. Such coupling 
effect between several waves, propagating with variable velocities, is the fundamental 
property that distinguishes plastic waves from ordinary elastic waves. In general, there are 
as many plastic waves as components of the particle velocity in the problem considered 

From the point of view of wave coupling, the constitutive equations may be classified as 
"partially coupled" and "coupled' constitutive response equations, with time-dependency 
or independency. In a time-independent problem, both the constitutive equation and the 
loading/unloading condition are considered to be time-invariant. Difficult mathematical 
problems are often involved particularly in the case of time-dependent coupled equations, in 
connection with the numerical methods of integration and with establishing of wave 
propagation characteristics (e.g., Cristescu, 1967). 
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In order to simplifY the difficulties involved in treating generalized problems in 
dynamic plasticity, one approach is to consider first those problems which would require a 
one-dimensional constitutive relation. An example of such class of problems is that concerned 
with the propagation of waves in extensible strings. In this case, although one constitutive 
equation is required, there are two kinds of waves, i.e., "longitudinal" and "transverse", 
which influence one another during propagation. 

12.2.1. THE ONE-DIMENSIONAL, TIME-INDEPENDENT PROBLEM 

As introduced earlier, the one-dimensional problem is characterized by a single spatial 
coordinate. Hence, only single components of stress and strain are considered. Thus, the 
propagation of longitudinal stress waves in thin rods or wires is the only possible one
dimensional situation. In this case, the influence of the shape of the transverse section of the 
rod on the propagation of the wave is disregarded, although, the area of this transverse 
section is taken into account. The rod, in the one-dimensional problem, is considered to be 
slender, so that the lateral inertia would be neglected. This translates into the assumption that 
the particles can move freely in the directions transverse to the generatrices of the rod. The 
coordinate axis will be chosen with the origin 0 being located at the end ofthe rod, and the 
positive direction of the OX-axis is considered to be directed along the rod, Fig. 12.1. 

Y, y )~ 

~dx~ 

0 f------ {--- ----------- -1--- .... X, X 

I 

L ____ .._ u (x, t), a (x, t), e (x, t) 
Xlt) 

Figure 12.1. The one-dimensional problem: A single spatial coordinate is involved, the 
influence of the shape of the transverse section of the rod on the propagation of the wave 
is disregarded (but, the area of this transverse section enters into the calculations), and 
lateral inertia is neglected. 
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The loading Problem 
Loading. lt is defined by the condition that the stress at the end of the rod either increases 
continuously, or after increasing up to a certain maximum value, remains constant thereafter. 

Following Cristescu (1967), we assume that fort< 0 the rod is at rest, while for t=O the end 
of the rod is impacted by a rigid body so that fort> 0 the particles of the rod are no longer 
at rest. We shall assume that the impact occurs in a very short interval of time, so that 
buckling of the rod would not occur, or at least be negligible. For simplicity, we assume that 
the cross section of the rod, which is plane before the impact, remains plane also after the 
impact. This translates into the requirement that all the particles in a given cross section of 
the rod will displace parallel to the axis of the rod with equal amounts. 

With reference to Fig.l2.1, we consider an elemental segment of the rod bound, for t=O, by 
the cross-sectional planes at X and X + dX. At time t, these planes will have the coordinates 
x(t) and x(t)+dx(t), or simply x and x+dx, respectively, where x is the Lagrangian 
coordinate (see Chapter 3). Considering at t=O, the cross sectional area of the bar is Ao and 
the density is p0 , whilst the corresponding quantities at time t are A and p, respectively. 
Thus: 

the conservation of mass equation is 

p A= Po A0 (1 +E) (12.1) 

where E denotes the involved measure of strain. 

the equation of motion, for the element dx, is 

(12.2a) 

whereF(x, t) is the force acting on the cross-section ofthe rod of a coordinate x at timet. 
Equation (12.2a) can be written, alternatively, as 

(12.2b) 

where u is the displacement and a is the stress on the initial cross-sectional area of the rod. 
We shall adopt the usual convention for the sign of the stress, i.e., positive in tension and 
negative in compression. For simplicity, only positive stresses will be considered. Under the 
additional assumption that A is constant along the rod, i.e., aNax=O, the equation of motion 
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(12.2) can be written as 

a2 u 1 ao 
-----
at2 p ax 

(12.3) 

the constitutive equation: 
In order to proceed with the solution of the dynamic plasticity problem, one must 

include the constitutive equation for the material of the rod, at the considered experimental 
conditions, and combine it with the equation of motion (12.3). 

Here, we consider that the constitutive equation of the material, during a dynamic 
experiment, can be written in the following finite form 

0 = f(E) (12.4) 

where the function f(E) is usually a monotonously increasing function ofthe strain E. It is 
further assumed that do/dE is a monotonously decreasing function of E, e. g., a work
hardening material, Fig. 12.2. During the entire loading process, it is assumed that the same 
constitutive equation (12.4) applies to every cross-section of the rod. 

C1 

0 ~----------------~.e 

Figure 12.2. One-dimensional stress-strain curve for a work-hardening material (a typical 
response of majority of metals): a= f (e) with f (e) is a monotonously increasing function 
of E, do/dE is a monotonously decreasing function of e and o d2o/dE2 < 0 for any e. 
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Combining the constitutive equation (12.4) with the equation of motion (12.3), it follows that 

a2 u =_!_~ a2 u 
at 2 p de ax 2 

(12.5) 

Equation (12.5) is the equation of motion of the rod whose response behaviour is described 
by (12.4). The equation of motion (12.5) is a "quasi-linear equation of the second order'. 
This equation may be, also, expressed in the following format of a "wave equation of first 
order". 

where v = ~ is the "particle velocity" and at 

(12.6) 

(12.7) 

is the "velocity of wave propagation", which is strain-dependent for the case of plastic wave 
propagation, and is governed by the slope of the stress-strain curve of the material. For all 
kinds of constitutive equations of finite form (12.4) used in practice, c(E)~ 0, Cristescu 
(1967). Both the equation of motion {12.5) and the wave equation {12.6) are "quasi-linear" 
equations, i.e., they are linear with respect to the derivatives of the highest order, but their 
coefficients depend on the involved functions and their first derivatives. 

Characteristics of the Equation of Motion. In order to establish the wave equation (12.6), 
it is necessary to determine the so called "characteristics of the system". The latter are 
represented by curves in the xOt plane, at the intersection of which v and E are 
continuous junctions of the arguments x and t, but, posses discontinuous derivatives. 

In addition to the system of equations {12.6), we consider the following relations (Cristescu, 
1967) 
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av avdx avdt 
-=--+--as axds atds 
ae a € dx a € d t (12.8) 
-=--+--as axds atds 

where the derivatives dx/ds and dt/ds are computed along one of the "characteristic 
directionS', so that av/as and aetas are in effect "directional derivatives" in a characteristic 
direction. For the purpose ofbrevity, we denote in (12.8) av I as by dv, etc. Then, this system 
of equations can be written as 

av av 
dv=-dx+-dt 

ax at 
ae ae 

ae =-dx +-dt 
ax at 

Combining (12.6) and (12.9), one obtains 

~= c 2 (dvdt-dedx av c 2 dedt-dvdx 

at -dx2 +c 2 dt 2 ax -dx 2 +c 2 dt 2 

ae dedx-dvdt 

which gives the definition of the "characteristics of the equation of motion" as 

dx 
-=±c(e) 
dt 

(12.9) 

(12.10) 

The differential relations satisfied along these lines are referred to as the "consistency 
conditions"; see Cristescu (1967). They are written as 

dv=±c(e)de (12.11a) 

or 
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(12.11b) 

along the characteristics s2 and s1, respectively. 

The following points may be concluded concerning the analysis presented above, 
pertaining to longitudinal wave propagation in a thin rod of a finite constitutive relation of the 
type (12.4), and with common boundary and initial conditions: 

the wave equation (12.5), or the system (12.6), possesses two distinct, real families 
of characteristic lines defined by (12.10). 

since (12.5), or (12.6), is quasi-linear, the slopes of the characteristics (12.10) are 
variable and depend on the strain function. Accordingly, the characteristics are usually 
two families of curves, which can be determined by the solution of the one
dimensional problem. 

the integration of the wave equation (12.5), or the system (12.6), is equivalent to the 
integration of the differential equations (12.11) along the characteristic lines (12.1 0). 

Following the presentation above, one can introduce the following definitions: 

A wave. A wave may be defined as the solution of the quasi-linear equation of motion (12.5), 
or, alternatively, the wave equation (12.6), determined within a certain range of variation of 
the variables x and t, and possessing continuous first and second order derivatives within 
this range. 

A wave front. It is the geometrical locus of the points which separate two waves and moves 
along the rod with time. Across a wave front, the velocity v and the strain E are continuous, 
but their derivatives are discontinuous. Ihus, wave fronts coincide with the characteristics 
of the equation of the motion, although, sometimes, some of the characteristics may not have 
such mechanical interpretation. 

An "acceleration wave". If the first derivatives of E and v are discontinuous across the 
wave front, the corresponding wave is referred to as an "acceleration wave", "continuous 
wave", "smooth wave" or "weak wave". In this book, we shall adopt the term "acceleration 
wave". The fronts of these waves are travelling discontinuity surfaces for first order 
derivatives of stress and for second order derivatives of displacement. 
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12.3. Dependence of the Wave Equation and its Characteristics on the Response 
Behaviour of the Material 

With reference to Eqn. ( 12. 7), the variation of the velocity of wave propagation c, as a 
function of the strain E is governed by the slope of the stress-strain curve, i.e., do/de. In other 
words, the variation of c as a function of E is dependent on the constitutive response of the 
material under consideration. 

(A) Linear Elastic Material 
If the impact at the end of the rod is not sufficiently strong, the stress may not yet 

reach the yield point. In this case, the waves generated at the end of the rod are pure elastic 
ones. Thus, the stress-strain relation of the rod, in this case, would be still governed by 
Hooke's law (Fig. 12.3a) 

o=EE (12.12) 

where E is Young's modulus. Recalling (12.7), the velocity of wave propagation is now 
constant, i.e., 

0 

0 

(12.13) 

t 

€ 
(a) 

0 
(b) 

Figure 12.3. Elastic wave propagation. (a) Linear elastic response, and (b) Wave 
propagation charncteristics for a linear elastic material: The characteristic field is composed 
of parallel straight lines, whereby the velocity of elastic wave propagation is given by C0 = 

../E/p. This translates into the fact that the distance between wave fronts, in a linear elastic 
material, is constant. (Adapted after Cristescu, 1967). 

X 
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Accordingly, the wave propagation characteristics, in a linear elastic material, take, 
in view of(J2.10), the form of parallel straight lines, Fig. 12.3b. This translates into the fact 
that the distance between wave fronts, in this material, is constant. 

(B) Perfectly Plastic Material 
In this case, the stress-strain curve is characterized by do/de = 0, Fig.12.4. Thus, in 

view of (12. 7), c ( E ) = 0, and "there is no wave propagation in the perfectly plastic rod". 
This also happens if certain portions of the stress-strain diagram are parallel to the strain axis. 
Thus, in these intervals, the wave considered can no longer propagate. 

0 

0 

do /de =0 t 

L-----------------------~ e 
X 

(a) (b) 

Figure 12.4. Perfectly plastic material: No wave propagation and, thus, no field of 
characteristics exist in such material; i.e., c (e)= 0. 

(C) Work-hardening Material 
For most metals, for instance, the stress-strain curve takes the form shown in Fig. 

12.2, where a d2a/de2 < 0 for any E. Substituting this condition of behaviour into expression 
(12.7), it can be easily shown that the wave propagation velocity c (e) decreases when the 
stress increases, i. e., de/de< 0 for any d€ > 0. Thus, if one assumes that due to the impact, 
the stress at the end ofthe rod, of a work-hardening material, increases continuously, then, 
the waves generated successively at the end of the rod will propagate with continuously 
deceasing velocities. 

Furthermore, for such materials, the corresponding wave fronts will be represented in a 
characteristic plane xOt by a divergent family of curves, whose slopes dt/dx will increase 
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with the decrease of the wave propagation velocity, in view of (12.1 0), i. e., with the increase 
of the stress .. This illustrated in Fig. 12.5. 

Thus, the distance between the wave fronts, for a work-hardening material, will 
increase during their propagation, i.e., the waves will spread 

(D) Materials Governed by Other Stress-Strain Relations 
In this category, we consider the following classes of materials 

(i) Materials whose stress-strain curve takes a form similar to that illustrated in 
Fig. 12.6 a, i. e., for which the slope increases continuously, a d2a/dE2 > 0 for 
any E. 

Such condition may be representative of the response behaviour of particular classes 
of rubbers, soils, and metals. For such classes of materials, since the slope of the stress-strain 
curve increases continuously, the velocity of propagation will increase when the stress 
increases, i.e., de/dE > 0 for any dE > 0, Eqn. (12. 7). Meantime, near the end of the rod, the 
distance between the wave fronts decreases during propagation, as the slope dt/dx of the 
representative characteristics decreases, Eqn. (12.10). This is illustrated in Fig. 12.6b. In this 
case, there is a tendency for wave fronts to be formed. 

(J t 

a=f(E) 

E 

Divergent family of characteristic 
lines, whose slopes increase with 
the decrease of the wave 
propagation velovity. 

X 

Figure 12.5. Wave propagation in a work-hardening material (typical response of majority 
of metals). (a) One-dimensional stress-strain curve; a=f(e) with f(e) is a monotonously 
increasing function of e, do/de is a monotonously decreasing function of e and a d2 a/de2 

< 0 for any e. (b) Field of characteristics: Divergent family of characteristic lines whose 
slopes dt/dx increase with the decrease of the wave propagation velocity. 
(Adapted after Cristescu, 1967). 
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(ii) Materials whose stress-strain diagrams take a form similar to that shown in 
Fig. 12.7a, whereby the curvature of the stress-strain curve changes at a 
certain point. 

In this case, the wave fronts will first diverge (de/dE < 0), and then converge 
(dc/d€>0). This is illustrated on the plane of characteristics shown in Fig. 12.7b. 

CJ 

0 

The distance between the wave 
fronts decreases during 
propagation as the slope dt I dx 
of the representative 
characteristics decreases. 

The slope of the stress 
strain curve is 
continuously increasing. 

(a) 

€ 0 
(b) 

Figure 12.6. (a) A representative of stress-strain curve of soft material (e.g., various classes 
of rubbers, soils and metals): a d2o/de2 > 0 for any e. (b) Field of characteristics 
corresponding to (a): Divergent family of characeristic lines; de/de > 0 for any de> 0. 
(Adapted after Cristescu, 1967). 

Characteristic lines converge. 

0 = f(E) 

E X 

Figure 12. 7. (a) A stress-strain curve of variable concavity. (b) Characteristic field 
corresponding to (a): A convergent family of characteristic lines, with the possibility of 
forming shock waves. (Adapted after Cristescu, 1967). 

X 



www.manaraa.com

136 

Summary 
(i) Assuming that the constitutive equation of the material can be written in a finite form 

(12.4), then, the motion is governed by the second-order equation of motion (12.5), 
or by the first-order wave equation (12.6). As mentioned earlier, both are "quasi
linear" equations, i.e., they are linear with respect to the derivatives of the highest 
order, but their coefficients depend on the involved functions and the first derivatives 
of these functions. 

(ii) The equations, referred-to under (i) above, are of the "hyperbolic type", i.e., either 
equation will result, for each value of the wave propagation velocity c(E) in two 
distinct characteristic lines in the characteristic plane xOt. 

(iii) Since the equations are quasi-linear, the characteristics will generally be curves with 
variable slopes. These slopes can be determined by the solution of either of the two 
equations (12.10}. Thus, these curves cannot be drawn a priori, but only when the 
solution of the problem is known. Such solution will depend on the initial and 
boundary conditions, together with the explicit expression of the constitutive 
expression (12.4); see Cristescu (1967). 

EXAMPLE 12.1 

We consider in this example an initially undeformed, semi-infinite bar at rest. This case is 
presented by Cristescu (1967) after Rakhmatulin (1945a&b). 

Initial conditions: 

t= 0 and x> 0: (x, 0) = v(x, 0) = (x, 0) = 0 (12.14) 

Boundary conditions: 

x = 0 and t ~ 0: E (0, t) or o(O, t) or v(O, t) are prescribed (12.15) 

The initial conditions (12.14) are satisfied in the region D of Fig. 12. 7, while the characteristic 
line OA represents the first wave front propagated along the rod. A solution can be obtained 
by integrating the relations (12.11) along the corresponding characteristic lines. These 
relations then become 

V = f C (E) dE + k1 = lJ1 (E)+ k1 (s2) 

v=- Jc(E}dE+k2 =-lJ1(E)+~(s1) 
(12.16) 
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where the parameters k1(Sz) and k2(s1) have different constant values on different 
characteristic lines and are called "Reiman invariants". 

With reference to (12.16), all the characteristics of negative slope intersect the characteristic 
line OA and, hence, commence from the undisturbed region D1. It follows then that all the 
constants k2 = 0, and throughout the region D2, the relation between the velocity and the 
strain is 

V = -'I' (E) (12.17) 

Substituting (12.17) into the first relation of (12.16), one concludes that both v and e are 
constant along the characteristics of positive slope. Accordingly one arrives at the following 
important conclusion: 

When some constant initial state is prescribed, the characteristics of positive slope are a 
family of straight lines. The equations of these straight lines can be expressed in the form 

X= C (E(t *) ){t - t *) (12.18) 

where t* is the time at which the straight line intersects the time-axis, as shown in Fig. 12. 7. 
The slope of this straight line is computed for these values of t*, i.e., using the boundary 
conditions. The propagating waves, corresponding to this situation, are called "simple 
waves". 

It should be emphasized, however, that the above conclusion is valid only if a constant initial 
state is prescribed, otherwise, the characteristics of positive slope will be, in general, curved 
lines in the characteristic plane xOt. Thus, simple waves may appear only in a region 
a4Jacent to a constant state region. 

One may fhrther describe the strain at the end of the rod in terms of the time parameter t*, 
e. g., 

E = E (O,t*) (12.19) 

then, by eliminating the time parameter t• between (12.18) and (12.19), a functional relation 
which defines E in terms of x and t is obtained (Cristescu, 1967). 

12.4. The Problem of Instantaneous Impact 

Karman and Duwez (1950) considered the special case where the strain was assumed to be 
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a function of the ratio x/t, but not ofx and t independently. Thus, from equation (12.17), it 
follows that the velocity is also a function only of the same ratio. Accordingly, the equation 
of the characteristic lines (12.18) now becomes 

x=c(E)t (12.20) 

The characteristics of positive slope, that correspond to (12.20) pass through the origin. This 
is the case of "instantaneous loading", and the corresponding simple waves are referred to 
as "centred simple waves". 

Karman and Duwez (1950) considered the following boundary conditions: 

u = v 1 t for x = 0 and t ~ 0 (12.21) 

where v1 is the constant velocity of impact. These authors sought then different particular 
solutions which would depend only on the ratio xlt and satisfy the equation of motion (12.5), 
the initial conditions (12.14), and the boundary conditions (12.15). They arrived at the 
following particular solution 

(12.22) 

where c1 is an undetermined constant with the dimension of velocity. It is easy to recognize 
that the strain corresponding to (12.22) is constant, i.e., 

(12.23) 

In order to find a particular solution to the above problem, in which the strain is a function 
of the ratio x/t only, i.e., 

E = f(x/t) = f(O (12.24) 

the function f(~) is determined by the condition that the equation of motion (12.5) must be 
satisfied. Following Cristescu (1967), the displacement is obtained from 

~ du 
u = [ ~d~ 

Further, using the relation 
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one obtains 

(12.25) 

Using the relations 

together with the equation of motion (12.5), one arrives at 

(12.26) 

Accordingly, under the assumption (12.24), one arrives at the following two particular 
solutions: 

(i) the particular solution (12.22) which results from f '(~) = 0, and corresponds to a 
constant strain E 1 and to a constant velocity of impact v1. 

(ii) the particular solution that is obtained from 

(12.27) 

Based on the constitutive equation (12.4), whereby (12.24) is also applicable, the full solution 
of the problem of instantaneous impact was obtained by Karman and Duwez (1950), see 
Cristescu (1967), as a combination ofthe two particular solution mentioned above: 

(a) for x > c0 t : E = 0 

(b) for c1 t < x::; c0 t, the relation (12.26) is satisfied, where c1 is the velocity of 
propagation of the plastic wave which carries the maximum strain E1 

(c) for 0 < x ::; c1 t, the strain is constant and is equal to E 1. 
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Thus, in the problem of instantaneous impact on a rod, of material specified by the 
constitutive condition (1 2.4), Figure 12. 2, the first elastic wave front propagates with a 
constant velocity c0 • The last plastic wave front propagates with a constant velocity 
c 1 = c( c1 ). Between these two waves, there is a set of other plastic waves, whose wave fronts 
are represented as an array of straight lines emitted from the origin of the plane of 
characteristics. Each of these waves propagates with a certain velocity c( c), where 
c1 <c (c)< c0 • Accordingly, the sudden impact, i.e., the sudden increase of strain at the 
end of the rod, is transmitted along the rod in the form of "centred simple waves", which 
bring about a smooth variation of the strain at any other cross-section of the rod This 
conclusion is valid for thin rods made of materials whose stress-strain curve is of a 
continuously decreasing slope. 

In order to determine the velocity c1 and the strain E 1 as functions of the velocity of impact 
vi> one combines equations (12.22) and (12.25) for the end of the rod to arrive at 

0 

vI = u ( 0' t) It = - f fm d ~ (12.28) 

The integral of(12.28) represents an area which may be also calculated using the expression 

El El 

V1 = - f ~dE= - f C (E) dE (12.29) 
0 0 

Expression (12.29) establishes a correspondence between the maximum strain E1 and the 
velocity of impact v1. Such relation is of significance in mechanical design applications that 
involve impact loading. 

If the stress-strain curve possesses a linear elastic range, then in this domain, all corresponding 
wave fronts generated by a sudden impact, will run together. In this situation, the first wave 
front will produce a sudden jump ofthe strain from E=O to E=Ey. 

If the impact at the end of the rod is of a small intensity and the stress is within the elastic 
range, i.e., o < oy, then the velocity of the wave propagation is constant, C0 , which is given 
by (12.13). Meantime, one can write that 

(12.30) 

and, by recalling Hooke's law, it follows that 

0 = E E = p v co (12.31) 
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Thus, if the loading of the rod is instantaneous, there will be two regions: 

(i) for x > C0 t, o = E = v = 0, 
(ii) for 0 s; x s; C0 the stress (o = p v1 C0 l and the strain (E1 = v/ co) are constant. 

Thus, in this case, there is a sudden increase of stress, strain and velocity when the wave, 
travelling with velocity C0 , reaches the corresponding section of the bar. 

12.4.1. THE UNLOADING PROBLEM 

When the stress at the end of the bar begins to decrease after having increased, unloading 
starts. During this phase, the fonnulation of the theory of wave propagation is different from 
that during loading for the material specimen under consideration. In many situations, after 
having increased, the stress at the end of the rod decreases to zero. Further, a succession of 
loading-unloading processes might occur quite often. 

The Unloading Constitutive Equation 
For a large group of elastic-plastic materials, especially metals, the unloading process is a 
perfectly elastic one. Thus, it is appropriate to use the following constitutive relation during 
unloading 

o = om (x) + E [ E - Em (x)) (12.32) 

where, for each cross-section x of the rod, o 1 (x) and E 1 (x) are the maximum stress and 
strain, respectively. It should be noted that for finite constitutive equations, such as (12.4), 
both the maximum stress and the maximum strain are reached at the same moment in a given 
cross-section of the rod. 

For an elastic-plastic material, however, the unloading problem is more difficult to deal with 
than the loading problem. This may be reasoned as follows: 

In each cross-section of the rod, the unloading process commences at a different 
maximum stress om (x) and a different maximum strain Em (x). In other words, for 
each section of the rod, a different constitutive equation (12.4) must be employed. 

Further, at the transition between loading and unloading, one must replace the loading 
constitutive equation (12.4) by the unloading constitutive equation (12.32). 

The Loading/Unloading Boundary. The loading/unloading boundary is defined as the 
geometrical locus of points in the characteristic plane xOt, in which the maximum strain has 
been reached in each cross-section of the rod. Thus, the loading process occurs below, and 
the unloading process occurs above this curve (locus). The shape of the loading/unloading 
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boundary depends on the constitutive response of the material, the boundary and the initial 
conditions. Consider the case when the loading I unloading boundary is represented by a 
general line below which, is the domain where plastic strain increases, whilst, in the domain 
above the loading/unloading boundary, the plastic part of strain is constant. This gives for 
loading/unloading conditions, respectively, the following definitions: 

a a> o 
at for loading, i.e., 

for unloading, i.e., 

aeP >0 
at ' 

a eP 
-=0 at 

(12.33a) 

(12.33b) 

Depending on the boundary conditions, the loading and unloading boundary may be 
sometimes formed as an area. In other words, this boundary is not always a curve in the 
characteristic plane "xOt ". 

Assuming that the equation for the loading/unloading boundary, in the characteristic plane 
"xOt", can be written as 

t = f(x) (12.34) 

(which is not known a priori), one may visualize the solution of the problem in a certain 
cross-section x of the rod as follows: When a timet= xlc0 has elapsed since the beginning 
of the impact at the end of the rod, the first elastic wave reaches the mentioned section. From 
this moment onwards, the strain increases continuously until t = f (x), when the first unloading 
wave reaches this section. Then, the elastic strain decreases to zero. Thus, for a given 
material, the strain increases and then decreases depending on the boundary conditions, and 
also on the maximum strain previously reached. 

The Equation of Motion in the Unloading Domain 
Combining equations (12.3) and (12.32), the equation of motion during unloading can be 
written as 

(12.35) 

where C0 is the constant velocity of propagation, Eqn. (12.13). In (12.35), am and em depend 
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only on the coordinate x. Thus, it is necessary to determine the solution in the unloading 
domain simultaneously with the solution in the loading domain, in order to find om (x) and 
Em (x). Meantime, the shape of the loading/unloading boundary can be found only by finding 
a solution to the problem which satisfies the initial and boundary conditions in the loading and 
unloading domains simultaneously. 

The general solution of(I2.35) is 

1 X 

u = F1 (c0 t + x) + F2 (c0 t- x)- E J (am- E Em) d X (12.36) 
0 

where F1 and F2 are arbitrary functions to be determined by the boundary conditions at the 
end of the rod and the loading/unloading boundary. 

Meantime, the characteristics of(12.35) are 

dx/dt= ± c 
0 

with the following differential equations being satisfied along these characteristics 

1 
dv=±-do 

p co 

(12.37) 

(12.38) 

This is with the understanding that the upper and lower signs in (12.37) and (12.38) 
correspond to each other. 

The shape of the loading/unloading boundary can be determined by graphical-analytical 
methods or, alternatively, by numerical methods. However, in the particular case of a linear 
work-hardening material under sudden loading, the shape of the loading/unloading boundary 
may be known a priori (Cristescu, 1967). 

The loading/Unloading Boundary. Linear Hardening Material under Sudden Loading. 
In this particular case, there are only two wave fronts, namely, x = C0 t and x1 = c1t. The first 
is the elastic wave front across which the strain jumps from zero to Ey. The second front is 
the plastic wave front. The latter must pass through each point of the loading/unloading 
boundary. This boundary must coincide with the straight line x1 =c1 t. The referred-to line is 

the plastic wave front which is characterized by a constant strain. On the other hand, it is a 
loading/unloading boundary along which the strain decreases. Accordingly, this line has 

contradictory properties. In fact, this line is an idealization of a bundle of parallel straight lines 
representing plastic wave fronts, the distance between them being very small (Cristescu, 
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1967). 

12.5. Determination of the Loading/Unloading Boundary 

As we mentioned earlier, there is no exact analytical method for determining the 
loading/unloading boundary. To overcome this problem, two alternative methods have been 
introduced in the literature. These are the graphical-analytical methods and the numerical 
methods. 

12.5.1. THE GRAPHICAL-ANALYTICAL METHOD. 

This method is presented in detail by Cristescu (1967). It can be applied to sufficiently long 
rods (no reflections), initially at rest and undeformed. The rod must also have homogeneous 
mechanical properties. In addition, the method is only applicable to the case of single loading. 

Within the context of the graphical-analytical method, in order to determine the distribution 
of the plastic strain after impact, one must first establishes the variation of the stress om (x) 
along the loading/unloading boundary. Meantime, the plastic strain may be obtained using the 
formula 

(12.39) 

In this case, the maximum strain is obtained at the impacted end of the rod. 

12.5.2. THE NUMERICAL METHOD 

This method is based on numerical integration along a network of characteristic lines. The 
following relations are often employed. 

In the loading domain, the characteristics and the differential relations satisfied along them 
are 

dx=±c(o)dt, 
do 

dv=±--
p c (o) 

The corresponding expressions in the unloading domain are 

(12.40) 
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p co 

The loading/unloading conditions, for a ~ aY , are: 

~ ~ > 0 during loading (when aa ~p > 0 ) 

~ ~ = 0 on the loading/unloading boundary ( when aa ~ = 0 ) 

~<0 
at during unloading (when aa ~p < 0 ) 

EXAMPLE 12.2 

This example is taken from Cristescu (1967). 
In this example, the following non-dimensional quantities are used: 

- X 
x=--, 

c1 T 

Boundary conditions: 

- t 
t =

T' 
- v 
v=-, 

vY 

The boundary conditions are chosen in the form 

- -

- a a=-, 
oy 

a=-4t(1-t}-1 

Initial conditions: 
The initial conditions are selected to be 

- E 
E =-

Ey 

t=O, x>O: o=-1, €=-1, v=O 

Constitutive equations (linear work-hardening Material): 
In a non-dimensional form, the constitutive equations are: 

During loading; 

145 

(12.41&42) 

(12.43) 

(12.44) 

(12.45) 

(12.46) 

(12.47a) 
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During unloading; o = om(x) + E"- E"m (x) (12.47b) 

In the non-dimensional ~ 0 t plane, the characteristic network in the loading domain is 
CO!!structed with li x = li t = 0. 02, while in the unloading domain one still has li x = 0. 02 but 
lit =(c1/c0 )lix. 

In the solution of the above problem, a difficulty might arise during the transition between the 
loading domain and the unloading one, as this would involve changing the network of 
characteristic lines along which the integration is performed during computation. The loops 
of the two networks are regular, except for those which lie on the loading/unloading 
boundary. Ifthe solution is computed in the unloading along a characteristic line of positive 
slope, then at a certain moment, when passing from one loop to the following one, one must 
estimate the moment at which the loading/unloading boundary crosses the side of the loop 
(Cristescu, 1967). 

Figure 12.8 (Cristescu, 1967) shows the loading/unloading boundary for the present example, 
as determined using equations (12.45), (12.46) and (12.47) above. As illustrated in the figure, 
the loading/unloading boundary propagates up to x= 1.68. In other words, the portion of the 
rod for which x > 1. 68 remains in an elastic state. The variation of the stress at various sections of 
the rod, both during loading and unloading are presented in Fig. 12.9. 

The variations of the maximum stress and of the plastic strain along the loading I 
unloading boundary are presented in Figures 12.10 and 12.11, respectively. 

The numerical method can be applied for any initial and boundary conditions as well 
as for any mechanical properties of the material that can be represented by a finite constitutive 
equation. In addition, the method can be applied if the rod is either semi-finite or finite. In 
other words, provision can be made in this method for taking into account the effect of the 
reflected waves on the direct waves and on the loading/unloading boundary, see Cristescu, 
1967. 

12.5.3. SPECIAL CASE: THE PLASTIC I RIGID SOLUTION 

In various problems of plasticity theory, it is possible to neglect the elastic strain in 
comparison with the plastic one. In this case, the material, introduced earlier in Chapter 7, 
is referred to as "plastic/rigid'. The propagation of longitudinal waves in thin rods made of 
such material was studied by Taylor (1948), Lee and Tupper (1954), among others. They 
considered the situation when a short steel rod makes an impact with a rigid surface, e.g., 
with a thick armour plate. 
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Figure 12.8. The loading/unloading boundary using the numerical method. "Reprinted 
from Cristescu, N. I Dynamic Plasticity, 1967, pp. 48, with kind permission from Elsevier 
Science- NL, Sara Burgerhartstraat, 1055 KV Amsterdam. The Netherlands". 
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Figure 12. 9. Stress profiles as obtained using the numerical method. "Reprinted from 
Cristescu, N. I Dynamic Plasticity, 1967, pp. 49, with kind permission from Elsevier 
Science- NL, Sara Burgerhartstraat, 1055 KV Amsterdam. The Netherlands". 
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Figure 12.10. Maximum stress profile. "Reprinted from Cristescu, N. I Dynamic Plasticity, 
1967, pp. 49, with kind pennission from Elsevier Science- NL, Sara Burgerhartstraat, 1055 
KV Amsterdam. The Netherlands". 
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Figure 12.1 1. Plastic strain profile. "Reprinted from Cristescu, N. I Dynamic Plasticity, 
1967, pp. 50, with kind permission from Elsevier Science- NL, Sara Burgerhartstraat, 1055 
KV Amsterdam. The Netherlands". 
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The assumption that the material is plastic/rigid is equivalent to the fact that there are two 
regions in the rod during wave propagation. The first region, where the plastic wave has not 
yet passed through, will move as a rigid body towards the fixed target with a velocity u. 
Meantime, the plastic wave front propagates away from the impacted surface with a velocity 
v. Applying the conservation of mass principle, one obtains 

( u + v) A0 =VA (12.48) 

where~ is the initial cross sectional area of the rod. Thus, the strain after the plastic wave 
front has passed may be expressed as 

E=(A-A0 )/A=u/(u+v) (12.49) 

Meantime, ifx denotes the length of that part of the rod which has not yet been disturbed at 
the time t, one has 

-dx/dt=u+v (12.50) 

Further, applying the law of conservation of momentum across the wave front, one has 

(12.51) 

where oY indicates the stress before the shock wave has reached the point under 
consideration. Thus oY represents the yield stress of the plastic/rigid material; as it is 
understood that the elastic stresses propagate instantaneously in this material. 

The equation of motion of the moving rigid part of the rod is written as 

pxdu/dt = -oy (12.52) 

Combining (12.49), (12.50) and (12.52), it follows that 

d(pu 2 ) =- oy E dx/x (12.53) 

Further by combining (12.49), (12.51) and (12.53), one obtains 
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2 J0 d[(o-o)E] 
Qn x = Y 

E oY 
(12.54) 

where o 1 is the maximum stress, corresponding to the moment of impact. Denoting the 
velocity of the rod at the moment of the impact by U. The latter can be expressed, in relation 
to the stress 01> by combining (12.49) and (12.51), as 

U= 
E 1 (o1 - a) 

p 

in which E 1 is the maximum strain corresponding to the stress o1. 

Following Cristescu (1967), one may use the notation 

thus, the relation (12.54) becomes 

Qnx 2 = f(o)- f(o 1 ) 

(12.55) 

(12.56) 

(12.57) 

Accordingly, since the stress-strain relation is assumed to be known, the expression 
represented by the function ft:o) may be easily determined from (12.57). Thus, the distribution 
of the plastic strain can also be obtained. 

12.6. Plastic Shock Wave 

It is a "strong discontinuity wave", the fronts of which are surfaces of discontinuity even for 
stress and first order derivatives of displacement. In this case, the propagating wave is termed 
"shockwave", "weak shock wave" or "wave of stress discontinuity" or "stress discontinuity 
wave". In our presentation, however, we shall use the term "shock wave". 

In this section, we consider only velocities of impact much smaller than the velocity of 
propagation of the waves, i. e., the particle velocity is assumed to be much smaller than the 
wave propagation velocity. Again we consider only one component of the stress and velocity, 



www.manaraa.com

151 

and we assume that the density of the material to be constant. All dissipative factors, such as 
lateral inertia. rate effects, thermal conduction, etc. will be again disregarded in the present 
section. Such dissipative factors oppose the formation of shock waves, or decrease the 
abruptness of the jump (Cristescu, 196 7). 

Two possibilities may be envisaged for the development of plastic shock waves in a solid rod: 

I) Plastic shock waves may be produced by a sudden impact at the end of the rod, e.g., 
an explosion or impact with a rigid body. In this case, a bundle of smooth waves with 
non-diverging fronts may be present. The latter can be however approximated, at the 
limit, by a propagating shock wave. This is the case most often considered in the 
literature when shock waves are considered. 

II) Plastic shock waves may also be developed due to some particular property of the 
material of the rod, and/or its particular constitutive equation. In such case, the 
distance between the wave fronts of smooth waves propagating in the rod decreases 
during propagation. There is then a tendency for the wave carrying the largest strain 
to overtake the others. Such situations may occur, for instance, if the stress-strain 
curve is concave towards the direction of the increasing stress, or alternatively, if 
certain parameters such as temperature, hydrostatic pressure, etc., might produce a 
similar effect. 

Equations of Motion 
As mentioned above, a group of smooth plastic waves may have the tendency, during 
propagation, to form a shock wave, even if the loading at the end ofthe rod is not sudden. 
In this case. the shock wave front does not generally coincide with the envelope of fronts 
pertaining to the propagating smooth waves. This is due to the fact that across the wave front 
certain jump conditions must be satisfied. Here, the shock wave front may be obtained from 
the condition that the jump relations, together with the conditions in front and behind the 
shock wave front are satisfied. 

For the purpose of establishing the equations of motion in Lagrangian coordinates, one 
considers, following Cristescu (1967), a thin rod moving with a velocity v and initially 
possessing a uniform strain E. We assume that the rod is in tension, hence, the stress and 
strain are taken as positive. 

At time t, a given section x of the rod is reached by the shock wave front. We shall denote 
the velocity of propagation of this front by c, with a sense towards the positive direction of 
the positive Ox- axis. When this front has passed, the particle velocity of the material will be 
v + [v] and its strain will beE+ [E]. 

A superscript "minus" sign will be used to denote the value of a certain function on the shock 
wave front on the side not yet perturbed, and a superscript "plus" sign to designate the value 
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of the same function, at the same point on the shock wave front, but on the other side, which 
has already been perturbed. During an interval t, the displacement u will vary across the 
shock wave front either by (~u)-=v-~t+E-~x or by (~u)+=v+~t+E+~x 

depending on which side of the front is considered. 

Thus, the "condition of discontinuity of displacemenf' yields the kinematic condition: 

[v] =- c[E] 

since 

(~u)- = (~u) + 

Meantime, the "momentum equation" gives the following dynamic condition 

cp[v]=-[o] 

(12.58) 

(12.59) 

Equations (12.58) and (12.59), together with the constitutive equation of the material of the 
rod are sufficient for the study of the propagation of shock waves in a thin rod. Equations 
(12.58) and (12.59) are known as the "Hugoniot relationhips", their forms are very similar 
to the differential equations satisfied along the characteristic lines. 

The theory of shock waves, which uses only equations (12.58) and (12.59), considers the 
process to be adiabatic, and disregards the variation of the internal energy as a result of the 
impact. This theory is often called "the elementary theory of shock waves". The dealt-with 
shock waves in this case are referred to as "weak shock waves". 

On the other hand, when the impact velocity or the jump in the applied pressure is very high, 
the variation of the internal energy or temperature cannot be neglected. In this case, the 
considered shock waves are referred to as "strong shock waves". 

Combining equations (12.58) and (12.59), one obtains the velocity of propagation of the 
shock wave as 

c=~_!_ [a] 
p (E) 

(12.60) 

This velocity of propagation does not generally coincide with the velocity of propagation of 
smooth plastic waves. This happens only for those portions of the stress-strain relation which 
are linear. In particular in the elastic range, the velocity (1 2. 60) coincides with the constant 
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elastic velocity of propagation c"' where equations (I 2.58) and (I 2.59) for c = C0 are well 
/mown in elasticity theory. 

In equations (12.58)- (12.60), a plus or minus sign must be associated with the velocity of 
propagation c, depending on the direction in which the wave propagates. This system of 
equations have been applied extensively in the literature. This is essentially due to the fact that 
computations using this system of equations are much simpler than the corresponding 
equations associated with a smooth wave propagation problem. That is, one has to solve an 
algebraic system of equations, instead of a system of partial differential equations, see, e. g., 
White and Van Griffis (1947, 1948) and Cristescu (1967). 

Rods with Variable Yield Stress 
The propagation of longitudinal waves in bars with variable yield stress was considered by 
Rakhmatulin (1946, 1950); see Cristescu (1967). In this work, it is assumed that initially the 
rod possesses the same yield stress value at any of its cross-sections, but after a longitudinal 
impact at one of its ends, its yield stress varies along the rod, i.e., as a function of the 
longitudinal coordinate of the cross-section x. 

Thus, each impact which produces a plastic strain would modify the yield stress of the part 
of the rod which is plastically deformed by that impact. In this context, the following two 
situations may arise: 

a) if the previous impact was applied at the same end of the rod, the yield stress 
decreases along the rod. 

b) if the previous impact was applied at the opposite end, the yield stress increases 
along the rod. 

Constitutive Equations. Denoting the variable yield stress, along the axis of the rod, by aY 
(x), the following stress-strain relations can be written 

a = E E for E < ay (x) 

a - ay = g (.) for E > EY (x) (12.61) 

where g is a function of the argument (e- Ey). 

Equations of Motion. In this case, the velocity of propagation c depends on the argument 
( E - Ey) . It is expressed as 

(12.62) 
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Meantime, the resulting equations of motion are 

(12.63) 
for 

The characteristics of equation (12.63) are given, and the differential relations satisfied along 
them are expressed, respectively, as 

2 de 
d X = ± C d t , d U = ± C d U + [ C 2 - C ) _Y d t (12.64) 

t x o dx 

Rakhmatulin (1950), see Cristescu (1967), presented the following description of wave 
propagation for the case when the yield stress of the rod increases. 

The first elastic wave front will propagate with a constant velocity C0 , and the last one will 
propagate with a variable velocity. In the characteristic plane, the domain of elastic 
deformation is separated from the domain of plastic deformation by the boundary x = f(t). 
Across this boundary, the second derivatives of the displacement suffer discontinuities. On 
the boundary itself, the strain is Ey (x). 

Using the characteristics (12.64), Rakhmatulin (1950), see Cristescu (1967), gave a method 
of determining approximately the boundary x = f (t). Meantime, the solution of the problem 
in the unloading domain is similar to that for homogeneous rods. 

Rods with Non-Homogeneous Mechanical Properties 
A more general problem is the propagation of longitudinal waves in rods possessing non
homogeneity related to various mechanical properties, e. g., variations, as functions of 
coordinates, in, e.g., the elastic modulus, yield point, work-hardening modulus and density. 
In general, the rod might have a stress-strain response behaviour that varies from a point to 
another within the rod. 

The propagation, in elastic rods, of waves which gradually change the elastic properties was 
considered by Juhasz (1949). Meantime, the propagation oflongitudinal waves in rods which 
are both elastically and plastically non-homogeneous was studied by Perzyna (1962). Here, 
the stress-strain relation is of the form a= f(e, x). For example, in the case of linear work
hardening material, this relation becomes: 
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For loading: 

o (x, t) = a (x) E (x, t) for E (x, t) ~ EY (x) 

o (x, t) = b(x) E (x, t) + [a (x)- b (x)] EY (x) for E (x, t) ~ EY (x) 
(12.65) 

For unloading: 

o (x, t) = oy (x) + [Em (x) - Ey{x)] b (x)- [Em (x) - ~ ~ ] a (x) (12.66) 

where, in the above two expressions, a(x) and b(x) are material parameters which are x
dependent, 

Meantime, the equation of motion can be written in the form 

p (x) a2 u (x, t)/ at 2 =a 0 (x, t) I a X 

The reader is referred, in this context, to Cristescu, ( 1967) and Olszak (1959). 

Bars with Variable Cross-Section 

(12.67) 

Here, the problem of the propagation of elastic-plastic waves in semi-infinite rods with 
variable cross-section is considered as one-dimensional with the same assumptions as given 

earlier. Denoting the variable cross-sectional area of the rod by A(x), the following equation 
of motion, for the case of a linear work-hardening material, can be written 

a o A' (x) a2 u 
-+--o=p-a x A(x) at 2 

(12.68) 

Cristescu ( 1967) presents the boundary conditions pertaining to this case as follows: 

Initially the end of the rod is subjected to a sudden pressure, which subsequently continues 

to increase. It can accordingly be assumed that the first elastic and plastic wave fronts are 

strong discontinuity fronts which propagate with velocities C0 and c1, respectively. Combining, 

along these fronts, the differential relations satisfied along the characteristics and the condition 

of continuity of the displacement, one obtains the law of variation of the strain along these 

lines. Beyond this point, in the loading domain, the characteristic method is suggested. 
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12.7. Dynamic Plasticity under a State of Combined Stress 

We consider in this section the problem of dynamic plasticity under the effect of combined 
stress as was treated by Cristescu (1965). 

12.7.1. THE PROBLEM 

Cristescu (1965) considered a thin walled tubular specimen of initial length Q0 . The end x = 
Q0 of the tube is assumed to be fixed, while the other end x = 0 is put dynamically into a 
combined motion: a tension and a torsion. This motion of the end section x = 0 of the tube 
is transmitted along the tube by intermedia of waves. This mechanism of propagation was 
analysed by Cristescu ( 1965) for several kinds of constitutive equations, in order to give the 
possibility to choose the appropriate constitutive equation which may be used for a certain 
material specimen under specific loading conditions. 

In the analysis, presented below, cylindrical coordinates of reference x, r, e are used, whereby 
the Ox- axis being directed along the symmetry axis of the tube. The components of the 
displacements in the axial and circumferential directions are denoted, respectively, by u and 
v. Due to the small thickness of the wall of the tube, the components o, o"', o,6 are assumed 
to be small and negligible by comparison with o"" and Oex. Meanwhile, the entire problem is 
considered to be axisymmetrical, so that all derivatives with respect to e would be considered 
to be zero (a I ae = 0}. Due to this last assumption and as the radial motion is disregarded, 
the single coordinate which is involved in computation is the axial coordinate x. The analysis 
aims at the determination ofthe rotation ofvarious transverse sections of the tube. 

Equations of Motion 
Using the assumptions mentioned above and taking into account that only two stress 
components are assumed to be different from zero (these will be denoted by 
oxx = o and o6x = 't ), the equations of motion are 

a 0 aut 
-+)(=p-ax X at 
a 't aut 
-+xa=P-ax at 

(12.69) 

where JCx and )(6 are body forces components, p is the density and U1 and U1, whereby the 
subscript t refers to the derivative with respect to time, are the components of the velocities 
(deformation rates) in the axial and circumferential directions. 

Strain-Displacement Relations 
Denoting by u, u and w the displacement components in the x, e and r directions, 
respectively, and taking into account the assumed axial symmetry, the strain components may 
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E =-

rr ar ' 
w 

Eee =- • 
r 

au E =-(=E) 
XX ax 

E =_!_~(=y) E =_!_(~+aw) E,=_!_(~-~) 
Ox 2 ax ' xr 2 a r ax ' rv 2 ar r 
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(12.70) 

Out of these strain components, two components are dominant, namely Exx and Eex. These 
components are denoted in the analysis byE andy, respectively. 

The first invariant of the strain tensor is 

3 
(12.71) 

while the second invariant of the stress deviator is, for the case under consideration, 

lz' = _!_a .. a .. = a2 + 'tz. 
2 IJ IJ 3 (12.72) 

where a' u are the components of the stress deviator. 

Two particular motions corresponding to two specific sets of boundary conditions are 
considered. 

The first case corresponds to a uniaxial longitudinal compressive motion, by the 
assumption that everywhere u = 0. In this case, the system of equations (12.69) 
reduces to a single equation of motion 

(12.73) 

The other particular case corresponds to u = 0; then, instead of (12.69), one has 

a. au, 
-+xe=Pax at 

which describes a uniaxial shearing motion. 

(12.74) 
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The Constitutive Equations 
In order to express the constitutive equations, one assumes that the strain-rate components 
can be decomposed in an elastic component and a plastic one, i.e., 

(12.75) 

where e'ij are the rate of strain deviator tensor. The elastic part of the strain rate is assumed 
to satisfy the Hooke's law, i.e., 

(12.76) 

and 

(12.77) 

where o', are the components of the stress deviator, om is the mean stress and G and K are 
the elastic constants; namely the shear and bulk moduli, respectively. 

Concerning the plastic component of the strain, Cristescu (1965) assumed quite general 
constitutive relations which are able to emphasize not only plastic inviscid properties, but also 
viscoplastic effects. In a general form, such constitutive equations are written as (see, also, 
Cristescu, 1967) 

(12.78) 

where by giving various expressions for the coefficients ~ld and Bij , one may obtain several 
constitutive equations used in dynamic plasticity. 

For the particular stress state under consideration, equation (12.78) can be written as 

p 

E~x = <f>u a~ + <pl2 aax + tJr 1 
p 

(12.79) 
Eax = <f>21 a~ + <f>zz aiJx + tJr2 

From equations (12.70) and (12.75) to (12.77), together with the simplified notation 
mentioned before, equations (12.79) can be written, respectively, as 
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aut ( 2 1 ) . . -= -<p +- o+<p 1:+lJI ax 3 II E 12 I 

-=-<p a+ 2<p +- 1:+2lJI aut 4 . ( l ) . ax 3 21 22 G 2 

k. . h 0 ta mg mto account t at om=-, 
3 

E = 9KG 
(3K +G) 

For simplicity, Cristescu (1965) adopted in his analysis the notations 

0 u =+( 2<pu + ~ + 3~)' ai2=<pi2' P1 =lJ11 

4 1 
0 21 = 3 <p21' a22 = 2 <p22 + G' P2 = 2 lJ12 
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(12.80) 

(12.81) 

so that the constitutive equations (12.80) can be written, respectively, in the following simple 
form 

aut . . 
- =a II 0 + ai2 1: + P1 ax 
aut . . 
- = a2I 0 + a22 1: + P2 ax 

Velocities of Propagation 

(12.82) 

Following Cristescu (1965), one computes, then, the characteristic lines of the systems 
( 12.69& 12.82) to obtain four families of characteristic lines satisfYing the differential equation 

(12.83) 

Thus, one obtains two velocities of propagation which are furnished (Cristescu, 1965) by 

C~L~ = all + a22 ± .j (a I - a22)2 + 4al2 a21 

CLT 2p (ail a22 - ai2 a2I) 
(12.84) 
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where the subscripts "TL" and "L T" refer, respectively, to a circumferential and a longitudinal 
motion. 

Differential Relations Satisfied along the Characteristic Lines 
In order to perform an integration scheme and to study the properties of the waves involved, 
it is necessary to write the differential relations satisfied along the characteristic lines. 

For the system of equations (12.69&I2.82) the differential relations satisfied along the 
characteristic lines (I2.83) can be determined as 

+ p c (I - p a22 c 2) d ut + p2 ai2 c 3 d ut + (I - p a22 c 2 )do 

+ p a.I2 c 2 d 't + [ p ~I c 2 ( I - p a.22 c 2) + ~2 a.l2 p2 c 4 (12.85) 

where for c, appearing in (12.85), one of the two expressions (I2.84) may be replaced, and 
"d" stands for the "interior derivative" along a characteristic line. It is sometimes useful to 
write the equations (I2.85) in another form, i.e., 

p a 21 c 2 d u1 + ( I - p a 11 c 2) d u1 + a 21 c do 

I - p a. II c 2 
+ +[+~Ipa2Ic3~2c(I-pa.llc2) 

+ pc 

2 I-pallc2 
+ a2I c Xx + X6] d t = 0 

p 

(12.86) 

All the unknown functions involved in the problem are present in all the differential relations 
(12.85), and thus all the four waves are at the same time shearing waves and longitudinal 
waves. This conclusion holds, also, for the general constitutive equation (12.82). 

Coupling of the two Types of Waves 
From (I2.69) and (12.82), the dynamic jump conditions across a wave front can be obtained 
as 

(12.87) 
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and 

(12.88) 

where [.] designates the jump of the function inside the same brackets. Meanwhile, the 
kinematic jump conditions are expressed as 

[ aawt ] = - c [ aawx ] for lJ1 = ul' ut , o, 1: (12.89) 

Combining (12.88), (12.89), and the result in (12.87), Cristescu (1965) obtained the 
following two (equivalent) conditions 

(12.90) 

From (12.90), it is evident that generally for (12.82), because a 12 '~' 0 and a 21 '~' 0, both kinds 
of waves are coupled: both produce a longitudinal and a circumferential motion. This is the 
reason why the velocities of propagation (12.84) were denoted by LT and TL. 

In view of the relations (12.90), one can conclude that, if one of the following three 
possibilities arises 

(12.91) 

one has 

(12.92) 

respectively. In the first case, the shearing motion is dominant with respect to the longitudinal 
motion, while in the third case a reverse situation arises. The equality in (12.91) and (12.92) 
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occurs in isolated points or for a particular type of (theoretical) loading when everywhere 
6 = t, which is referred-to by Cristecu (1965) as "diagonal loading". Similarly, one obtains 

C 2 ~ 1 
TL

< P (a2, + a22) 
(12.93) 

Initial Conditions. 
One may assume that at t < 0 the tube is at rest and that some constant uniformly distributed 
stress state is present, i.e., 
For instance: o0 = 1:0 = 0. 

0 ~ X~ ~O l -U1 = U1 = 0 

t<O 0 - oo' 1: ="to 

(12.94) 

Boundary Conditions 
Following Cristescu (1965), the boundary conditions may be prescribed as follows: 
The end x = ~0 of the tube is fixed; 

X=~ l 0 u=u=O t t 
t ~0 

while the end x = 0 is put into a combined motion 

x=Ol u1 =U(O,t), u1 =V(O,t). 
t ~ 0 

(12.95) 

(12.96) 

Applying the conditions (12.94 to 12.96), one integrate the system of equations 
(12.69&12.82) in order to obtain 

U1 (X, t ), U1 (X, t), 0 (X, t), 1: (X, t) 

Then, the longitudinal and circumferential motions of the points lying on a certain circle x = 
x • can be determined from 
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U (X*, t) = f Ut (X*, t) d t, 
0 

t 

* '! .- -8(x ,t)=-;:- ut(x ,t)dt, 
0 
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where r is the radius of the tube. Summing up the displacement u (x, t) along the tube (fixed 
t) we obtain the variation of the length of the tube, at the considered timet. 

The approach presented above can be used to study the dynamic plastic behaviour of various 
materials under combined loading (bi-axial loading of tubes). The entire picture of wave 
propagation and reflection can be described by integrating the previously mentioned 
equations. Cristescu (1965) demonstrated the application ofhis approach, summarized above, 
to the following particular representations of constitutive relations. 

(A) The perfectly-elastic case. 

It is the simplest possible case. 

aut . 
E-=o ax 

aut . 
G-=1: ax 

which is obtained from equations (12.82) for 

<pll = <pl2 = <p21 = <p22 = \jfl = \j12 = 0 

(B) A more complicated constitutive equation corresponds to 

(12.97) 

(12.98) 

For instance the Hohenemser-Prager (1932) constitutive equation is of this form 

. 1 . 1 (' k l y = 2G 1: + 2,) - /I.<2l 1: 

(12.99&12.100) 
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(C) The last particular case (12.98) may be considered as a special case 
of the more general case. 

The constitutive equations (12.82) can now be written as 

(12.101) 

Such constitutive equations are referred-to as "quasi-linear uncoupled' constitutive 
equations. 

(D) If all the coefficients q>;j are different from zero but 

(12.102) 

the constitutive equations will be called quasi-linear coupled constitutive equations. An 
example of such constitutive equations is the Prandtl-Reuss constitutive equation 

. . . , 2G 0 ict 0id . 2Ge .. =a .. +- a .. 
'J 'J H' a· a· OJ 

mn mn 

(12.103) 

where the work-hardening law takes the form 

Oij Oij = H ( f OicJ d E~) (12.104) 

and H' is the derivative ofH with respect to its argument. 

For the case under consideration, Eqn. (12.103) is expressed as 
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. [1 4 1 2]· 2 1 . E= -+---0 0+---0't't 
E 27 H'I, 3 H'I, 

2 2 

. 2 1 . [ 1 1 2]· y=---01:0+ -+--'t 't 
9 H ' I' 2G H. I' 

2 2 

(12.105) 

(E) Finally the last special case, which will be considered is an example of the general 
constitutive equation of the type (12.76&12.78), is of the form 

o:. ( l .Y(I') ., IJ 1 k , 2 , , , , 
E;i = 2G + 2 1- {2 O;i + --.- okt okt O;i 

11 I' 212 
2 

(12.106) 

This can be obtained (Cristescu, 1967) by assuming that the rate of strain component can be 
decomposed as 

• • E • VP • P 
E .. = E .. + E.. + E .. 

lj IJ lj IJ 
(12.107) 

where t;;r is the viscoplastic rate of strain component and €~ is the plastic inviscid rate of 
strain component. In ( 12.1 06) k is a plastic constant, 11 is the viscosity coefficient while the 
function Y describes the work-hardening properties of the material. 

In particular, for the problem under consideration, Eqn. ( 12.1 06) can be written as 

. [ 1 4 .Y(I:i) 2 ]. 2 .Y(I:i) . . 1 ( k l 
E = E + 27 -~-2 - 0 0 + 3 -~-2 - 0 't 't + "3rl 1 - {i 0 

(12.108) 

The above constitutive equations describe the main properties emphasized by the general form 
of the constitutive equation (12.78). If necessary, other effective examples of the constitutive 
equations (12.78) can be considered, which would emphasize other possible mechanical 
properties. 
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12.8. Transition to Dynamic Thermoelasticity 

The presence of a thermal field, due to heating of the body, is often considered as non
homogeneity. The situation is more complicated when the thermal field is variable, and, also, 
when the temperature variation is sudden at the boundary of the body. A more difficult 
problem, which is often encountered in practice is that in which variations in both temperature 
and stress are prescribed at the boundary of the body. 

When a sudden variation of the temperature is prescribed at the boundary of the body, 
then a stress field will be produced as a result of thermal dilatation. The abruptness of the 
temperature variation will involve inertia forces. This, by consequence, results in stress waves 
which will propagate through the body. Meantime, if the temperature at the boundary 
surpasses a certain limit, the body will pass from the elastic to the plastic state. Thus, the 
resulting stress waves can be either elastic or elastic-plastic. In addition, it is likely that 
various plastic loading domains will appear due to the existence of the thermal field in the 
body, just as supplementary plastic regions can appear due to the non-homogeneity of the 
body (e. g., Raniecki, 1964 and Cristescu, 1967). 
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CHAPTER 13 

CHARACTERIZATION OF LINEAR VISCOELASTIC RESPONSE 
USING A DYNAMIC SYSTEM APPROACH 

13.1. Introduction 

The characterization of the relaxation and creep response functions of viscoelastic 
materials has always been a main research topic in Viscoelasticity. The construction of a 
precise model for describing the rheological response of the material and the establishment 
of an efficient and accurate method for determining the pertaining material response functions 
from experimental data have been basic tasks in this research field. 

To achieve this objective, both analytical and experimental methods have been 
developed, and can be classified into the following three categories. 

a) Quasi-static Methods 
These methods are directly based on the definition of the creep, or the relaxation, 
function. By these methods, one usually conducts a series of quasi-static creep or 
relaxation experiments, in which, respectively, a constant stress or constant strain 
is loaded onto the specimen, and the time-dependent response of the material is 
measured. The pertaining creep or relaxation function is then determined from the 
experiment data (Chapter 8). 

Quasi-static methods, as described above, are simple, but they have a vital 
shortcoming that a very long period of time is usually required so that the creep, 
or relaxation, properties of the material are to be fully demonstrated. This 
requirement of a very long time scale often constitutes a distinct obstacle for using 
quasi-static methods to determine the creep and relaxation functions of a 
viscoelastic material. 

b) Time-temperature Superposition Methods 
To overcome the inconvenience of long time testing periods in the quasi-static 
methods, the so-called time-temperature superposition (TTS) method has been 
developed. The basis of this method is that the time and temperature effects on a 
linear viscoelastic material are directly interrelated. At a low testing temperature, 
the creep, or the relaxation, experiment requires a long period of time, while at a 
higher temperature, it takes a relatively shorter period of time. By using the TIS 
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method, the creep or relaxation experiments are conducted at elevated temperatures 

for relatively short periods of time, then, the measurements are transformed to 

obtain the corresponding viscoelastic properties at the required low temperature 

(usually the room temperature). 

The TIS method would demand, however, a set of complex temperature control 

facilities. Another difficulty related to this method stems from the fact that 

nonlinearity in the viscoelastic response of the material could be introduced at high 

temperature. 

c) Dynamic Methods 
Dynamic methods are based on the results of dynamic experiments performed on 

viscoelastic materials. In these methods, the experiments are often conducted by 

applying a sinusoidal loading on the viscoelastic material and the resulting 

experimental response data are gathered in a frequency domain to obtain pertaining 

response spectra. The creep or relaxation functions are, then, obtained from the 

analysis of these spectra (Chapter 8). 

The most distinct advantage of the dynamic methods over the quasi-static and TIS 

methods is that the dynamic experiments are relatively easy to conduct within a 

short period of time and without the need of complex experimental facilities. 

Therefore, the use of dynamic methods are attracting recently more and more 

attention from the researchers in the field. 

Gibson, et al. (1990), for instance, presented a method by which experimental 

dynamic data are used to determine both dynamic and quasi-static viscoelastic 

response behaviour of the material. In their method, the complex moduli are obtained 

first from vibration measurements by employing the Fast Fourier Transform 

technique. Then, the quasi-static creep or relaxation properties are calculated from the 

already determined complex moduli by a numerical integration algorithm. 

13.2. Dynamic System Identification Methods 

In this chapter, a linear viscoelastic material is considered as a dynamic system. From 

this point of view, a dynamic system identification method is presented for the determination 

of the relaxation or creep function of the material from dynamic experimental measurements. 

First, the relation between the relaxation or creep function and the frequency response 

function ofthe system is established by assuming a model of rational function of polynomials 

for the frequency response function. Second, a discrete-time system analysis method is 

introduced to identify the order and parameters of the model. Within the context of this 

approach, the presentation of this chapter deals distinctly with the following two topics: 
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(i) Characterization of the response behaviour of linear viscoelastic materials by 
incorporating the measurements of the time-rate of the input, together with 
those ofthe output signals. This is carried out in Section 13.3. 

(ii) Extending the identification model introduced under (i) above to include the 
instantaneous response behaviour at time t=O. This is presented in Section 
13.4. 

The presented approach is illustrated, at its various stages, by numerical examples. 

13.3. Discrete-time System Analysis as Based on the Time-rate of the Input Signal 

For a linear viscoelastic behaviour, the general expressions of the constitutive 
relationship can be written for both relaxation and creep, respectively, as follows 

de('r) 
o(t) = J--R(t - t")dt 

d1: (13.1) 

e(t) 
(13.2) 

where o(t) is the stress, e(t) is the strain, R(t-1:) is the relaxation function and C(t-t) is the 
creep function of the material. 

Equations (13.1) and (13.2) above are one-dimensional representations of the 
"Boltzmann Superposition Principle" or "Hereditary Law" introduced earlier in Chapter 8. 
The presented equations (13 .1) and (13 .2) are governing, respectively, the stress-relaxation 
and creep response of the linear viscoelastic material. Both the relaxation function R(t) and 
creep function C(t) are usually defined for t:>O, whereby for t<O, one has 

R(t) = 0 
C(t) = 0 

t<O (13.3) 

Mathematically, equations (13.1) and (13.2) have the same structure and both can be 
written in the following general form: 
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y(t) J x(t)g(t--c)d-c 

where, in the case of stress-relaxation, 

and, in the creep phase, 

x(t) = de(t) 
dt 

g(t) = R(t) 

y(t) = o(t) 

x(t) 
do(t) 

dt 

g(t) = C(t) 

y(t) = e(t) 

(13.4) 

(13.5) 

(13.6) 

For simplicity, we shall refer to the situation identified by (13.5) as "the relaxation 
experiment", and to the situation designated by (13.6) as "the creep experiment". The 
function g(t) appearing in both (13.5) and (13.6) is referred to as the "characteristic 
function" of the material. Thus, from a system theory point of view, Eq. (1 3. 4) represents a 
relationship between an input x(t) and a corresponding output y(t) of the system with g(t) 
being the system characteristic function. 

Therefore, if one considers the viscoelastic material specimen as a dynamic system, 
then, the characterization of its rheological response would involve a process of 
identification of its characteristic function g(t) from dynamical measurements. 

and 

Taking Fourier transform ofy(t) and x(t) and denoting 

Y(iw) = - 1 Jy(t)e -iwtdt 
211: 

(13.7) 
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X(iw) = - 1 Jx(t)e -i"'1dt 
21t 

then, by substituting Eqn. (13.4) into Eqn. (13.7), one can write that 

w w 

Y(iw) = 2~ J e -i"'{g(()d( J x(t)e -i"'~dt 

183 

(13.8) 

(13.9) 

where ( is the time parameter (t-t). Thus, by combining (13.8) and (13.9), one has the 
following relation in frequency domain 

where 

Y(iw) = 21t H(iw) X(iw) 

H(iw) = - 1-Je -i"'1g(t)dt 
21t 

(13.10) 

(13.11) 

With reference to Eqn.(13.11), H(iw) is the Fourier transform of the system 
characteristic function g(t). Meantime, the 'frequency response function" of the system is 
identified, with reference to (13 .1 0), as 

F(iw) = 21t H(iw) (13.12) 

In terms of the frequency response function (13.12), the response equation of the 
system in frequency domain, Eqn. (13 .1 0), becomes 

Y(iw) = F(iw)X(iw) (13.13) 

Denoting the inverse Fourier transform of the frequency response function F(iw) by 
ftt), then, in view of expressions (13.11) and (13.12), it follows that 
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J 21t H(iw )e i"''dw 

= 21tg(t) 

(13.14) 

Therefore, from (1 3.12), or. (1 3. 14) implies that the frequency response junction of 
the dynamic system is the Fourier transform of the characteristic junction g(t) of the system 
multiplied by 2 1r. 

To model the response behaviour of a linear viscoelastic material, we assume that the 

"frequency response function" ofthe corresponding dynamic system has the following form 

F(iw) 
a 

(13.15) 

where a and b1, b2, ... ,bP are constant parameters. 

13.3.1. SYSTEM CHARACTERISTIC FUNCTION 

Corresponding to Eqn.(13 .15), the system characteristic function g(t) is derived as 
follows: 

Assume the following p-th. order algebraic equation: 

s P + b sp-t + + b s + b = 0 
I ··· p-1 p (13.16) 

has roots~" ~2, ... , !;.,, then, the frequency response function, Eqn. (13.15), can be expressed 

as 

F(iw) 
a (13.17) 

Further, the above equation can be expressed in a partial fraction forrn as 
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P A 
F(iw) = L . m 

m=l lW - ~m 
(m=l,2, ··· , p) 
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(13.18) 

where~ (m=l,2, ... ,p), corresponding to roots ~m (m=l,2, ... ,p), are calculated by 

a Am= _p ____ _ ( j, m = 1, 2, ··· , p 

II ( ~m - ~j ) 
j=l, m=l 

j'~'m 

Taking the inverse Fourier transform ofEqn. (13.18), one obtains 

~ P A 
= J L -. _m_e iwtdw 

m=l lW-~ 
-~ m 

P ~ A 
L J-. _m_e iwtdw 
m=l IW-~ 

-~ m 

p ~ t 
= LAme mu(t) 

m=l 

(m=l,2, ··· , p) 

where u(t) is the Heaviside step function (Appendix B) defined by 

u(t) = { ~ t<O 
t~O 

Thus, Eqn. (13.20) can be expressed as 

t~O 

t<O 

(m=1,2, ... , p) 

(13.19) 

(13.20) 

(13.21) 

(13.22) 

From equations (13.5), (13.14) and (13.20), the relaxation function R(t), in a dynamic 
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relaxation experiment, is expressed as 

R(t) = - 1 f(t) 
21t 

1 p F t 

= -LAme'"' u(t) 
21tm"l 

-{-1 tAm e~t 
- 21tm"l 

0 

(m=1,2, ··· , p) 

t~O (13.23) 

t<O 

On the other hand, if the experiment is a dynamic creep experiment, then, the system 
characteristic function g(t) represents the creep function C(t), Eqn.(13.6). Thus, the 
expression for the creep function C(t), corresponding to (13.23), can be written as 

C(t) = - 1 tAm e~ t u(t) 
21tm"l 

-{_1 tAm e~t 
- 21tm"l 

0 

(m=1,2, ··· , p) 

t~O 

t<O 
(13.24) 

Referring back to Eqn. (13.15), if the frequency response function of a dynamic 
system in frequency domain is expressed by this equation, then, the dynamic behaviour of the 
system may be assumed to be governed by the following differential equation in the time 
domain 

dP dp-1 
-y(t) + b --y(t) +···+ b y(t) = ax(t) 
dt P I dt p-I p (13.25) 

where a and b1, b2, •.• ,bP are the same constant parameters appearing in Eqn. (13.15). Taking 
Fourier transform ofEqn.(13.25), one has, with reference to (13.7), 

(iw)P Y(iw) + b1 (iwr' Y(iw) +···+ bP Y(iw) = a X(iw) (13.26) 

Thus, by recalling the definition of frequency response function, that is 
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F(. ) _ Y(iw) 
IW- --

X(iw) 
(13.27) 

it is clear that one arrives back to Eqn. (13.15). 

Eqn. (13.25) can be further written in the following operational form 

D(t) y(t) = a x(t) (13.28) 

where 

D(t) 
dP dp-1 

+b--+ .. ·+b 
dtP 1dtp-l p (13.29) 

However, in order to determine the frequency response function of the system, it is 
necessary to establish the values of the parameters a; bJo b2, ... , bP and the order p, Eqn. 
(13.26), or from (13.28) the measurements of the input x(t) and the outputy(t). 

13.3.2. DETERMINATION OF THE PARAMETERS a AND bl> b]>···· bp OF THE 
MODEL EQUATION (13.26) 

In practice, x(t) and y(t) are usually given in the form of discrete-time signals. That 
is, the continuous-time signals x(t) and y(t) are sampled into discrete series. Let us assume 
that the sampling interval is /1 T. Thus, from experimental measurements, one obtain the 
following two discrete time series; representing, respectively, the output and input of the 
system: 

yi = y("T· i) } 
xi = x(" T· i) 

(i = 0, 1, 2, .. -) (13.30) 

With reference to equations (13.5) and (13.6), a signal of the discrete-time input series 
{ xJ, i=O, I ,2, ... , represents, in the formulation below, the time-rate of strain in a dynamic 
relaxation experiment, or, alternatively, the time-rate of stress in a dynamic creep experiment. 
In an actual experiment, the loading signal is always known, thus, the corresponding time-rate 
of the signal can be easily obtained. In this, one assumes (e.g., Cadzow, 1973) that the 
relation between the two discrete-time series {xJ and {yi}, i=O, 1,2, ... , is governed by a 
discrete-time system of the p-th. order. That is 

Y. + Aly. I + ... + A IY· I + A Y· = ax. I tJ 1- tJp- 1-p- tJp 1-p I 
(i=O I 2 ... ) , , , (13.31) 
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where a and PI> P2, ... , PP are constant parameters. 

Let 

and 

where B is a "single-step delay operator". Eqn. (13 .31) can, thus, be written as 

( i =0, 1 ,2,.·-) (13.32) 

Taking the z-transform ofEqn. (13.32), one has (e.g., Cadzow, 1973), 

Y(z) = Hiz) X(z) 

where Y(z), X(z) are, respectively, the z-transforms ofthe discrete-time series {yi} and {xJ. 

In this equation, Hiz) is the "transfer junction of the discrete-time system" expressed by 

In analogy to (13.16), we consider the p-th order algebraic equation: 

1 + p, s _, + ... + pp s -p = o 

(13.33) 

(13.34) 

Denoting the roots of (13.34) by A1).2, ... ,AP, then, the transfer function of the discrete-time 

system, Eqn. (13.33), can be written as 

(13.35) 

(m=l,2,.··, p) 

where Bm (m=l,2, ... ,p), corresponding to roots Am (m=l,2, ... ,m), are calculated by 
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P II (1-J...J..~~) 

j=l, m=l J 
j;tm 
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G, m = 1, 2, ··· , p 

(13.36) 

Taking the inverse z-transform of Eqn.(13.35), one obtains the following 

characteristic series ofthe discrete-time system 

(k=012··· ' , , m = 1,2, ... , p) (13.37) 

where u[k] is a discrete-time unit step function defined by 

u[k] = { ~ k<O 
k = 0, 1, 2, ... (13.38) 

By using the function hik), Eqn. (13.37), the relation between the input and output of the 

discrete-time system can be expressed as 

(i, k = 0,1,2, .. ·) 

(13.39) 

In searching for the relation between the characteristic function g( t) of a continuous

time system and the characteristic series ~(k) of the corresponding discrete-time system, one 
may approximate Eqn. (13.4) by 

y(t.T · i) "' L g(k · t.T) x[t.T · (i - k)] · t.T 
k=O 

1 ~ 

= -I:f(k · ~T) x[~T · (i-k)] · ~T 
21tk=O 

(13.40) 

(i, k = 0, 1, 2, .. ·) 

Combining the above equation with Eqn. (13.30), one has 
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1 00 

Yt'-L f(k · t.T) xi-k · t.T 
21t k=O 

(i k = 012···) 
' ' ' ' 

(13.41) 
Comparing equations (13.39) and (13.41), the following equation may approximately 

hold 

(k=O 1 2 ···) 
' ' ' (13.42) 

Thus, from equations (13.22), (13.37) and (13.42), it follows that 

(13.43) 

(m=12···P · k=012···) 
' ' ' ' ' ' ' 

Eqn. (13.43), above, is the relation which determines the parameters of the model 
equation (13.15). Ifthe parameters a and flm, (m=J,2, ... ,p) of the discrete-time system are 
determined from the discrete-time series of input signals { x;} and of the corresponding output 
signals {y;}, then, the parameters a and bm, (m=l,2, ... ,p) for the continuous model equation 
(13.15), or alternatively (3.26), can be calculated, as illustrated below, by using Eqn. (13.43). 

13.3.3. DETERMINATION OF THE PARAMETERS a, flm, m=l,2, ... ,p OF THE 
DISCRETE-TIME SYSTEM EQUATION (13.31) 

In the following, we discuss the method to determine the order p and parameters a 
and flm (m=l,2, ... ,p) ofthe discrete-time system. 

Choose arbitrarily an order p and parameters ~ flm (m= 1,2, ... ,p) of a convenient 
discrete -time system. Then, with reference to Eqn. (13.31), it follows that 

(i = 0 1 2 ···) ' ' ' 

(13.44) 
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where e. ( i=0,1,2, ... ) is the combined error in choosing the values of&, Pm (m=1,2, ... ,p) and 

the order p. The errore; can be expressed as 

= y.- {WJT {A } 
t t Pm 

(i = 0, 1, 2, ... m=1,2, .. ·,p) 

where 

{W? = ( - Y;-1 , ... , Y;-p , x) 

(i=O,l,2, ... m=1,2, .. ·,p) 

By minimizing, i.e., 

N 

e2 = _.!._ L e;2 

N;=p·t1 
N 

= _.!._ L (Y; - {W? {pm}) (Y; - {pm}T {W)) 
N;=p+l 

(i=0,1,2,... ; m=1,2, .. ·,p) 

one has 

(i=012 ... · m=12 .. ·p) 
' ' ' ' ' ' ' 

(13.45) 

(13.46) 

(13.47) 

(13.48) 
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Thus, for every choice of an order p, a corresponding {Pm} can be determined by Eqn. 
(13.48). Then, from Eq.(13.47), the error corresponding to the choice of the order p can be 
calculated. Since e2 is a function of the order p, the choice of the order of the discrete-time 
system can be made by the requirement that it would result in a minimum e2• 

13.3.4. NUMERICALEXAMPLES 

To test the analytical model developed in the previous section, a number of numerical 
illustrations are carried out below. The formalism of these illustrations is outlined as follows: 

1. For a given system, one calculates the response under certain dynamic loading 
by a numerical method. Here, the Runge-Kuta method (e.g., Morris, 1983) is 
employed. Consequently, two discrete-time series (One is the input to the 
system and the other is its response) are obtained. 

2. Assuming that no other knowledge about the system is given except the two 
discrete-time series mentioned by Eqn. (13.30), one applies the already 
introduced Dynamic System Identification Method to the two discrete-time 
series. In this, one determines first, the parameters characteristic of the 
transfer function of the discrete-time system, then, establishes the 
corresponding continuous system. 

Example 13.1 
Consider the first order system 

y + 5y == x(t) 

(13.49) 
under an input represented by: x(t) = 100 sin (tl.5). 

By comparing (13.49) to (13.25), the parameters of the system (13.49) are given by: 

With an input x(t) = 100 sin (tt.5), which may be the rate of strain or stress, one can obtain 
two discrete-time series of input and output as plotted, with 11 T =0. 01, in Figures 13.1 and 
13.2, respectively, One uses, then, discrete-time systems (DTS's) of different orders, Eqn. 
(13.32), to model the system. The errors pertaining to three different discrete-time systems 
were calculated and are listed in Table 13.1. 
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TABLE 13 .1. Errors in determining three different discrete-time systems 

Order First Second Third 

Error 0.852409E-02 0.253536E+OO 0.634591E-l 

From Table 13.1, the DTS of first order is the system with minimum error, therefore, 
one chooses the first order DTS to model the continuous system governed by a first order 
differential equation of (13.49). The parameters of this first-order DTS are listed in Table 
13.2. 

§ 
;; 
~ 
g 
1:1 
-~ 

100 

50 

0 

-so 

-100 

0 2 4 6 8 10 12 14 16 18 

time (second) 

Figure 13.1 Input: x(t) ~ JOOsin (115 ) with Ll T ~ 0.01. "Reprinted from Int. J. Pres. Ves. 
& piping 61, Yu P. and Haddad, Y.M., A dynamic system identification method for the 
characterization of the rheological response of a class of viscoelastic materials, 87-97, 1995, 
with kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington 
OX5 1GB, UK". 

TABLE 13.2. Parameters characteristic of first-order DTS 

Parameter 

Value -0.952681E+OO 0.951930E-02 0.95268 

20 
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where panda are parameters of the discrete-time system, (13.31), and A. is the root of the 
characteristic equation (13.34) of the considered first-order DTS. The corresponding transfer 
function H.J(z) and the parameter B can be obtained by using equations (13.35) and (13.36). 
Then, according to Eqn.(13.43), the parameters, Am , (m (m=1) of the corresponding 
continuous-time system can be calculated. 

20 

15 

10 

E 
~ 
>-., 
0 ., ., 
c: 
0 
0. 

-5 ., ., 
a: 

-10 

-15 

-20 
0 2 14 16 18 20 

Time (second) 

Figure 13.2 Outputy(t) corresponding to the inputx(t) in Fig. 13.1. First-order system 
y + 'i y = x(t) with parameters a= 1.0, b1 = 5 and an order p = 1. "Reprinted from Int. 
J. Pres. Ves. & piping 61, Yu P. and Haddad, Y.M., A dynamic system identification 
method for the characterization of the rheological response of a class of viscoelastic 
materials, 87-97, 1995, with kind permission from Elsevier Science Ltd, The Boulevard, 
Langford Lane, Kidlington OX5 1GB, UK". 

Figure 13.3 shows the exact and the estimated response given by the 1st order DTS. 
Figure 13.4 shows the exact and the estimated system characteristic function g(t) from the 1st 
orderDTS. 
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Figure 13.3 The exact and the estimated responses from the first-oder DTS. First-order 
system: y + 5 y = x ( t) with parameters a = 1·0, b 1 = 5, p = 1 and input x{t) of Fig. 13 .1. 
"Reprinted from Int. J. Pres. Ves. & piping 61, Yu P. and Haddad, Y. M., A dynamic 
system identification method for the characterization of the rheological response of a class 
of viscoelastic materials, 87-97, 1995, with kind permission from Elsevier Science Ltd, The 
Boulevard, Langford Lane, Kidlington OX5 1GB, UK". 
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Figure 13.4 The exact and the estimated system characteristic functions g(t) from the first
order DTS. First-order continuous time system: y + 5 y = x(t)with parameters a= 1·0, 
b 1 = 5, p = 1 and input x (t) of Fig. 13 .1. "Reprinted from Int. J. Pres. Ves. & piping 61, 
Yu P. and Haddad, Y. M., A dynamic system identification method for the characterization 
of the rheological response of a class of viscoelastic materials, 87-97, 1995, with kind 
permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OXS 
1GB, UK". 

195 
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Example 13.2 

Consider the second order system 

y + 25y + 100y = x(t) (13.50) 

With an input x(t) = 100 sin (tu), Fig. 13.1, which may be the rate of strain or stress. The 

corresponding output discrete-time series is plotted in Fig. 13.5, with AT = 0. 01. The errors 
for discrete-time systems of different orders are listed in Table 13.3. 

TABLE 13.3 

Order First Second Third Fourth 

Error 0.254506E-02 0.971892E-05 0.234843E-04 0.877769E-03 
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Time (second) 

Figure 13.5 Outputy(l} corresponding to the input x(t) in Fig. 13.1. Second-order system: 
y + 25 y + 100 y = x(t)with parameters a= 1·0, b1 = 25, b2=100 andp = 2. "Reprinted 
from Int. J. Pres. Ves. & piping 61, Yu P. and Haddad, Y. M., A dynamic system 
identification method for the characterization of the rheological response of a class of 
viscoelastic materials, 87-97, 1995, with kind permission from Elsevier Science Ltd, The 
Boulevard, Langford Lane, Kidlington OX5 1GB, UK". 
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Figure 13.6 The exact response and the estimated responses from the second-order DTS. 
Second-order system: y + 25 y + 100 y = x(t) with parameters a= 1·0, b 1 = 25, b2 =100, 
p = 2 and input x(t) of Fig. 13.1. "Reprinted from Int. J. Pres. Ves. & piping 61, Yu P. 
and Haddad, Y. M., A dynamic system identification method for the characterization of the 
rheological response of a class of viscoelastic materials, 87-97, 1995, with kind permission 
from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK". 
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From Table 13.3, the DTS of second order is the system with minimum error, the 
parameters ofwhich are given in Tables 13.4 and 13.5. 

TABLE 13.4 

Parameter p, 

Value -0.175611E+01 0.764908E+OO 0.906642E-04 

TABLE 13.5 

Parameter 

Value 0.95601 0.80010 
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where l 1 and l 2 are two roots of the characteristic equation of the corresponding DTS, 
Eqn.(13.34) 

Figure 13.6 shows the exact and the estimated response given by the 2nd order DTS. 
Figure 13.7 shows the exact and the estimated system characteristic function g(t) for the 2nd 
orderDTS. 
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Figure 13. 7 The exact and the estimated system characteristic functions g (t) from the 
second-order DTS. Second-order system: y + 25 y + 100 y = X ( t) with parameters a = 
1. 0, b1 = 25, b2 = 100, p = 2 and input x(t) of Fig. 13.1. uReprinted from Int. J. Pres. 
Ves. & piping 61, Yu Ping and Haddad, Y. M., A dynamic system identification method 
for the characterization of the rheological response of a class of viscoelastic materials, 87-
91, 1995, with kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, 
Kidlington OXS 1GB, UK". 

13.4. Extension of the Model to Include the Instantaneous Response Behaviour 

50 

In Section 13 .3, the linear viscoelastic material was considered as a dynamic system 
whereby an analytical model was presented for the determination of the creep and relaxation 
functions of the material from dynamic experimental measurements. First, the relation 
between the viscoelasiic material function and the frequency response function of the system 
was established by assuming a model of rational function of polynomials for the frequency 
response function. Then, a discrete-time system analysis method was introduced to identify 
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the order and parameters of the model. The introduced method requires two discrete-time 
series, i.e., the time-rate of the input signal and the corresponding output signal. The 
instantaneous response of the system was not, however, taken into consideration. In the 
present section, the approach of Section 13 .3 is followed with the consideration that the 
viscoelastic material function is discontinuous at the time t=O. Here, the relation between the 
relaxation or creep function and the transfer function of the system is established by using the 
Laplace transform method. A discrete-time system analysis method is introduced to identify 
the order and parameters of the model. The method requires, similar to the earlier treatment 
of Section 13.3, two discrete-time series, i.e., the time-rate of input signal and the 
corresponding output signal. Numerical examples are given to illustrate the application of the 
proposed analytical model. 

13.4.1. THEMODEL 

In the present section, the same idea of Section 13.3 is adopted, but with the 
pertaining viscoelastic experiment is considered to begin at timet= 0. Therefore, Laplace 
transform is seen to be more suitable for the analysis of the viscoelastic problem by using the 
initial value theorem. In this context, the Laplace transform pair (e.g., Fodor, 1965) 

~(s) = J Y(t) e -stdt 

Y"(t) 

0 

r+ioo 

~ J ~(s) estds 
2m 

r-ioo 

(13.51) 

is employed in the course of the presented analysis of this section. Here, in equation ( 13.51 ), 
Y(t) is a time function, Sf(s) is the Laplace transform of .Y(t) and r is a real constant. 

Denoting the Laplace transforms of y(t), x(t) and h(t) by Y(s), X(s) and H(s), 
respectively, and taking Laplace transform of Eqn.(13.8), one obtains the following 
relationship between the input and output 

Y(s) = H(s) X(s) (13.52) 

where the theorem ofLaplace transform of the convolution oftwo signals has been used (e.g., 
Fodor, 1965). 

In view of the previous analysis, in the dynamical relaxation experiment case, H(s) is 
interpreted as: 
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H(s) = [R(t) e -stdt 

0 

and, in the dynamic creep experiment case, H(s) is identified as: 

H(s) = JCCt) e -stdt 
0 

(13.53) 

(13.54) 

Before a model is assumed for the function H(s), we have to analyze the special 
behaviour of the relaxation and creep functions at t=O. We know that both R(t) and C(t) are 
not continuous functions at t=O. Each is equal to zero at t=O -, and is equal to a finite value 
at t=O+. 

From the initial value theorem ofLaplace transform (e.g., Fodor, 1965), one has 

lim s H(s) = R(O+) for the relaxation case 

(13.55) 
lim s H(s) = C(O+) for the creep case 

Because each of R(O+) and C(O+) is not equal to zero, we can assume the following 
rational function for H(s) 

H(s) 

where, 

b1sp-J + b sP-2 + ··· + b 
2 p 

s P + a s p-I + ··· + a 
I p 

= Q(s) 
P(s) 

(13.56) 
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Q(s) = b sp-l + b sP-2 + + b s + b I 2 ... p-1 p 

(13.57) 

in which, b~> b2-··· bP, and a~> a2, ••• , aP are constant parameters, andp is the order ofthe 
polynomial. To satisfy the condition (13.55), the order of polynomial Q(s) has to be one less 
than the order of P(s). 

On the basis of the assumption of Eqn.(13.56), the response relation (13.52) is 
expressed as 

P(s) Y(s) = Q(s) X(s) (13.58) 

Taking the inverse Laplace transform of(13.58), one obtains the following model in 
time-domain 

dP dp-1 
-y(t) + a1--y(t) + ··· + aPy(t) 
dt p dtp-l 

dp-1 dp-2 
= b --x(t) + b --x(t) + ··· + bPx(t) 

ldtp-1 2dtp-2 

With reference to (13.56), one assumes the characteristic equation 

~P + a ~p-I + ··· + a ~ + a = 0 I p-1 p 

(13.59) 

(13.60) 

with roots ~~ , ~2, ... , ~P, then, the transfer function H(s), (13.56), may be written in the 
following partial fraction form (e.g., Fodor, 1965) 

b sp-l + b sP-2 + ··· + b 
H(s) = I 2 P 

(s - ~ 1)(s - ~2) ··· (s - ~P) 

- AI ---
s - ~I 
+~ 

s - ~2 

A 
+ ... + __ P_ 

s - ~p 
(13.61) 

P A L-m 
m=l S - ~m 



www.manaraa.com

202 

where Am(m =I, 2, ... p) can be calculated by 

Am = lim H(s) (s - ~m) 

·-~ 

b ~p-1 
I m + b2~~-2 + ... + b ~ 

p-1 m 
p 

II (~m - ~k) 
k=l, m=l 

k•m 

+ b 
p (13.62) 

By taking the inverse Laplace transform ofEqn.(l3.61) and noting that the inverse 
Laplace transform of 1/(s-e) is e¢, one can obtain the time-domain model for h(t) as 

p ~ t 

h(t) = LAm e""' (13.63) 
m=l 

13.4.2. DETERMINATION OF THE CHARACTERISTIC PARAMETERS OF THE 
PROPOSED MODEL. 

In the previous section, we established the model for the characterization of the 
response behaviour of a linear viscoelastic material with the inclusion of the instantaneous 
response at time t = 0 . In this section, we discuss the determination of the parameters 
characteristic of the model by using the dynamic experimental measurements. Thus, in the 
pertaining dynamical relaxation experiment, we assume to obtain two discrete-time series of 
the time-rate of loading strain, and the stress response, respectively, as 

(13.64) 

Similarly, in the pertaining dynamical creep experiment, one assumes to obtain two 

discrete-time series of the time-rate of stress loading and the strain response, respectively, as 

o(t0), o(t1), ... , o(tN _1), o(tN) 

e(t0), E(t1), ··· , e(tN_ 1), e(tN) 
(13.65) 

Further, with reference to Eqn.(13.5), or (13.6), one may express the input and output 

of the dealt-with experiment, in the form of generalized discrete-time series, as: 
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(13.66) 

Now, we have to analyze the two discrete-time series ofEqn.(13.66) in order to 
determine the parameters A,.,(,. (m = 1, 2, ... p) in Eqn.(13.63). In doing so, and in 
correspondence to the continuous-time differential function Eqn.(13.59), we introduce the 
following discrete-time system (e.g., Cadzow, 1970& 1973). 

(k = 0, 1, 2, ... ) 

where aO> a]J ... , ap-1 and P]J P2 ••• , PP and p are constant parameters. Denoting 

Dyk = Yk-1 

and 

Eqn.(13.67) can be written as 

(13.67) 

(13.68) 

(13.69) 

(13.70) 

Representing the z-transform (see Appendix D) of {yt} and {xt} by Y(z) and X(z), 
respectively, and taking the z-transform ofEqn.(13.70), one has 

q>(z -1) Y(z) = 6(z -1) X(z) 

6( -1) 
Y(z) = _z - X(z) 

q>(z -1) 

= Hiz) X(z) 

(13.71) 
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where Hjz) is called the "transfer junction" of the "discrete-time system", expressed by 

a0 + a 1 z- 1 +···+a z-(p-l) 
p-1 

+ A z -I + ... + A z -(p-1) + A z -p 
1-'1 1-'p-1 1-'p 

Assume that the characteristic equation 

has roots .A,J> .A,]>···.A,r Then, Eqn.(13.72) can be written as 

a + a z -I + ... + a z -p+l Hiz) = ___ o __ l ____ __,_p_-1 ___ _ 

(1 - A1z - 1)(1 - A2z -I) ... (1 - \z -I) 

Bl ~ ~ 
---- + ---- + ... + -----''-----
1 - A z -I - A z -I 1 - A z -I 

I 2 p 

P B L m 
m=l 1 - A Z -I 

m 

where Bm (m = 1,2, ... , p) are calculated by 

a +aA.-1 +···+a A.-p+l 
0 I m p-1 m 

p 

II (l - Ak A~l) 
k=l, m=l 

k•m 

(13.72) 

(13.73) 

(13.74) 

(13.75) 

Taking the inverse z-transform ofEqn.(13. 74), one obtains the system characteristic 
series or weighting sequence of the discrete-time system as 
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p . 

hii) = L Bm A~ u(i) (13.76) 
m=l 

(i = 0, 1, 2, ... ) 

By using the function h.J(i), Eqn. ( 13.7 6), the relation between the input and output of 
the discrete-time system can be expressed as 

~ 

Yi = L hd(k) xi - k 
k = 0 

( i, k = 0,1,2, ... ) (13.77) 

In searching for the relation between the characteristic function h( t ), Eqn. ( 13.63 ), of 
a continuous-time system and the characteristic series b.J(i), Eqn.(13.76), of the corresponding 
discrete-time system, we approximate Eqn.(13.4) by 

~ 

y(.~T · i)"' Lh(k · t:.T) x[t:.T · (i - k)] · t:.T 
k=O 
~ 

= L h(k . aT) x[aT . (i-k)] . aT 
k=O 

(i k = 0 1 2 ... ) 
' ' ' ' 

From Eqn. (13.78), one has 

~ 

Yi"' L h(k · t:.T) xi-k · t:.T 
k=O 

( i, k = 0, 1, 2, .. -) 

(13.78) 

(13.79) 

Substituting equations (13.63) and (13.76) into equations (13.77) and (13.79), 
respectively, then, by comparing equations (13.77) and (13.79), the following equation will 
approximately hold 

1 
A= -B 

m aT m 

1 
~=-InA 

m aT m 

( m = 1 , 2 , ... , p ) (13.80) 

To determine the parameters Bm, A.m (m = 1, 2, ... p) appearing in (13.76) for the 
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discrete-time system, the parameters aOo a~> ... , aP_1; fl~> {J2, ... ,A, in the model Eqn.(I3.67) 
have to be determined first. Choosing arbitrarily an order p and parameters aOo a~> ... , aP_1; fl~> 
{J2, ... , fJP of a discrete-time system and substituting them into Eqn.(13.67), one has 

~ ' 
Y +rly + ... +rly 

i "'' i-1 1-'p i-p 
(13.81) 

( i = 1, 2, ... , N) 

where e;(i =I, 2, ... , N) are the values of error in the chosen values of the parameters a0, a1, 

... , ap-1; {J1, {J2, ... , {JP and the order p. The errors e ;(i = I, 2, ... , N) can, then, be expressed 
as 

pp 
ei = Y; - ( -yi-1 ,. .. , -yi-p , X; ,. .. , xi-pT! ) ao 

&, 

(i=l,2, .. ·,N) 

where, 

and 11 T 11 represents the transpose of a matrix. 

By minimizing the sum ofthe square of errors, i.e., 

(13.82) 

(13.83) 
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(13.84) 

(13.85) 

Thus, for every choice of an order p, a corresponding {fJ} can be determined by 
Eqn.(13.85). Accordingly, the pertaining sum ofthe square of errors can be calculated form 
Eqn.( 13. 84). The choice of the order p of the discrete-time system is determined by the 
requirement that it would result in a minimum sum of the square of errors. 

To test the analytical model developed above, a number of numerical examples are to 
follow. 

Example 13.3 

Consider the first order system 

y + 0.2y = x(t) (13.86) 

Let the input x(t), onto the system, be 

x(t) = 100 sin(t 1.5) 

With reference to equation (13.59), the parameters of this system are listed in Table 13.6. 

TABLE 13.6 

a b 

0.2 1.0 

Then, the corresponding parameters Am and (m (m = 1) which are defined in 
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Eq.(13.61) can be calculated, respectively, from equations (13.60) and (13.62), and are listed 
in Table 13.7. 

TABLE 13.7 

A 

1.0 -0.2 

By employing the Runge-Kutta method (e.g., Morris, 1983), with ~T=O.Ol, one 
obtains two discrete-time series of input and output, which are shown, respectively, in Figures 
13.1 and 13.8. Then, one uses discrete-time systems (DTS) of different orders, Eqn.(13.67), 
to model the system. The error e2, Eqn.(l3.84), for three discrete-time systems (DTS's) of 
different order are given in Table 13.8. 

100 

80 

Time, t(s) 

Figure 13.8 Outputy (t) corresponding to the input x (t) of Fig. 13.1. First-order 
system y + 0 · 2 y = x ( t) with parameters a1 ~ 1·0, b1 ~ 0-2, and order p ~ l. "Reprinted 
from Int. J. Pres. Ves. & piping 67, Yu P. and Haddad, Y. M., On the dynamic system 
identification of the response behaviour of linear viscoelastic materials, 45-54, 1996, with 
kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 
1GB, UK". 
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Table 13.8 

Order First Second Third 

Error 0. 526948E+OO 0.205991E+2 0 .206344E +0 1 

From Table 13.8, the discrete-time system of first order is the system with minimum 
error, therefore, one chooses this DTS to model the system . The parameters of this DTS as 
determined from equations (13.73) and (13.85) are listed in Table 13.9. 

TABLE 13.9 

Parameter 

Value -0.998250E+OO 0.997577E-02 0.99825 

where PI> ao are parameters of the discrete-time system defined in Eqn.(13.67) and;.,, is the 
root ofthe characteristic equation (13.73) ofthe DTS. Because this DTS is of first order, its 
transfer function, Eqn.(13.72), is written as 

B 
Hiz) = 1 (13.87) 

I - A z -I 
I 

whereB, is calculated, according to Eqn.(13.75), as 

B1 = a0 = 0.997577E-02 

Then, according to Eqn.(13.80), the parameters of the corresponding continuous-time 
system can be determined as 

I A = (-) B = 0.997577 
1 f1T I 

(13.88) 
~ = (-I ) In A = -0.1852 

I f1T I 

For comparison, we list the exact and estimated values of these parameters in Table 13.10. 
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TABLE 13.10 

Parameter 

Exact 1.0 -0.2 

Estimated 0.997577 -0.1852 

Thus, the estimated system characteristic function, (13.63) is written as 

(13.89) 
= 0.997577 e -o.1852t 

Figure 13.9 shows the exact and the estimated responses given by the first-order discrete-time 
system. 
Figure 13.10 shows the exact and the estimated system characteristic function h(t) obtained 
from the first-order discrete-time system. 

120 
Exact-

100 
Estimated ----

80 
f\, 

60 --->. 
40 

Time. t(s) 
Figure 13.9 The exact and estimated output y (t) from the first-order DTS. First-order 
system y + 0· 2 y= x(t)with parameters a1 = 1·0, b 1 = 0·2, order p = 1, and input x(t) 
of Fig. 13 .1. "Reprinted from Int. J. Pres. Ves. & piping 67, Yu P. and Haddad, Y. M., 
On the dynamic system identification of the response behaviour of linear viscoelastic 
materials, 45-54, 1996, with kind permission from Elsevier Science Ltd, The Boulevard, 
Langford Lane, Kidlington OX5 1GB, UK". 
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0.016--..--..---..--~-~-~--r--"T"-E_x_ac_,t---_---, 

Estima[ed ----

-::- 0.014 -.c 
c: 
.s 0.012 -~ 
~ 
u 0.01 .... ... 
VJI 
·c 
.B 0.008 

j 
u 0.006 

0.004~""""="'-=---:'-~-:L::-:-'::--~--:-':-~-:--""":'.1.:~~---:! 
0 0.2 0.4 0.6 0.1 1 1.2 1.4 1.6 1.1 2 

Time, t(s) 
Figure 13.10 The exact and estimated characteristic function h (t) from the first-order 
DTS. First-order sytem y + 0· 2y= x(t)with parameters a1 = 1·0, b1 = 0·2, order p = 
1, and input x (t) of Fig. 13.1. "Reprinted from Int. J. Pres. Ves. & piping 67, Yu P. and 
Haddad, Y. M., on the dynamic system identification of the response behaviour of linear 
viscoelastic materials, 45-54, 1996, with kind permission from Elsevier Science Ltd, The 
Boulevard, Langford Lane, Kidlington OX5 1GB, UK". 

Example 13.4 

Consider the second order system 

211 

y + as + ~y = blx + b2x (13.90) 

The input x(t), onto the system above, is assumed to be given by 

x(t)=sin[(~ty-I_w0)t] (13.91) 

where ~. <..>0 and y are constant parameters. 

Meantime, the frequency of the input signal is assumed to be 

w(t) = ~ t 1 - 1 + <..>0 (13.92) 
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The parameters in equations (13.90) and (13.92) are assumed as shown, respectively, 
in Tables 13.11 and 13.12. 

TABLE 13.11 

a b b 

51.000 50.000 11 60 

TABLE 13.12 

y 

0.5 2.0 30.0 

Solving equation (13.90) by using the Runge-Kutta numerical method (e.g., Morris, 
1983), we obtain two discrete-time series {""; k = 0,1,2, ... ,N} and {yk; k = 0,1,2, ... ,N} which 
are shown, respectively, in Figures 13.11 and 13.12 with t. T = 0. 01. Here, the parameter N 
represents the number of discrete points. 

Input--
l 

0.5 

-- 0 -I< 

-0.5 

-1 

0 2 3 4 s 
Time, t(s) 

Figurel3.11 Inputx(t)=sin[(pty-I_w0)t] withP=0·5, y=2·0andw0 =30·0 
to system y + a1 y + a2y = b1 x + b2 x with a1 = 51·0, a2 = 50·0, "Reprintedfrom 
Int. J. Pres. Ves. & piping 67, Yu P. and Haddad, Y. M., On the dynamic system 
identification of the response behaviour of linear viscoelastic materials, 45-54, 1996, with 
kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington 
OX5 1GB, UK". 
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0.3~------~------~----~~~------~-------, 

Output--

0.2 

0.1 

-0.1 

-0.2 

-0.3~------L-----~------~-------L------~ 
0 1 2 3 4 

Time, t(s) 
Figure 13.12 Output y (t) corresponding to the input shown in Fig. 13 .11. "Reprinted from 

Int. J. Pres. Ves. & piping 67, Yu P. and Haddad, Y. M., On the dynamic system 

identification of the response behaviour of linear viscoelastic materials, 45-54, 1996, with 
kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 

1GB, UK". 
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Using discrete-time systems (DTS) of different orders, Eqn.(13.67), to model the 
system, the error e2, Eqn.(l3.84), for discrete-time systems of different orders are shown in 
Table 13.13. 

TABLE 13.13 

Order First Second Third Fourth 

Error 0.287038£-2 0.236837£-05 0.211482£-04 0.284848£-04 

Based on the results shown in Table 13.13, we choose the second order DTS, of 

minimum error, to model the system. The parameters characterizing Eqn.(13.67) are 

determined, by (13.85), as presented in Table 13.14. 
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TABLE 13.14 

parameters 

Value -1.601352 0.605265 0.109850 -0.104986 

The roots of the characteristic equation Eqn.(l3.73) of the discrete-time system of the 
second order are then determined and are given in Table 13.15. 

TABLE 13.15 

Roots 

Value 0.989929 0.611423 

Accordingly, the pertaining parameters Bm (m = 1, 2) corresponding to Eqn.(13.75) 
can be determined and are shown in Table 13.16. 

TABLE 13.16 

B B 

0.0099283 0.09992170 

The parameters ofEqn.(13.62) can be finally identified form Eqn.(13.80) and are 
given in Table 13 .17. 

TABLE 13.17 

Parameter A A 

Estimated 0.992830 9.992171 -1.012206 -49.196643 

Exact 1.00000 10.00000 -1.00000 -50.00000 

Figure 13. 13 shows the exact and estimated output y( t). 
Figure 13.14 shows the exact and estimated values of characteristic function h(t). 
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0.3 

0.2 

0.1 

-- 0 ->. 

-0.1 

-0.2 

-0.3 
0 2 

Time, t(s) 

Exll(:t output -
Estimated output <> 

3 4 s 

Figure 13.13 The exact and estimated output y (t) corresponding to the input shown in Fig. 
13.11. "Reprinted from Int. J. Pres. Ves. & piping 67, Yu P. and Haddad, Y. M., On the 
dynamic system identification of the response behaviour of linear viscoelastic materials, 45-
54, 1996, with kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, 
Kidlington OX5 1GB, UK". 

1.4 

1.2 

-=-u 0.8 
c. e o.6 
u 

0.4 

0.2 

0 2 4 6 

Time, t(s) 

Exact creep 
Estimated creep <> 

8 10 

Figure 13.14 The exact and estimated creep curves corresponding to the input shown in 
Fig. 13.11. "Reprinted from Int. J. Pres. Ves. &piping 67, Yu P. and Haddad, Y. M., 
On the dynamic system identification of the response behaviour of linear viscoelastic 
materials, 45-54, 1996, with kind permission from Elsevier Science Ltd, The Boulevard, 
Langford Lane, Kidlington OX5 1GB. 
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CHAPTERI4 

VISCOELASTIC WAVES AND BOUNDARY VALUE PROBLEM 

14.1. Introduction 

When a localized disturbance is applied suddenly in a medium, it will soon propagate to other 
parts of this medium. This simple fact constitutes a general basis for the interesting subject 
of"wave propagation". Well-cited examples of wave propagation in different media include, 
for instance, the transmission of sound in air, the propagation of seismic disturbances in the 
earth, the transmission of radio waves, among others. In the particular case when the 
suddenly applied disturbance is mechanical, e.g., a suddenly applied force, the resulting waves 
in the medium are due to stress effects and, thus, these waves are referred to as "stress 
waves". Our attention in this chapter is focussed on the propagation of stress waves in 
viscoelastic solid media. In our representation, we consider the solid medium to be a 
continuum. Hence, the mechanics of wave motion in the medium will be dealt with from a 
continuum mechanics point of view. The basic concepts of continuum mechanics have been 
presented in Chapter 2. In such continuum, the solid medium, the disturbance is generally 
considered to spread outward in a three-dimensional sense (Graff, 1975). A wavefront is 
considered to be associated with the outward propagating disturbance. Consequently, 
particles of the medium that are located ahead of the wavefront are assumed to have 
experienced no motion, meantime, particles that are located behind the front are visualized 
to have experienced motion and may continue to vibrate for some time. 

14.2. Internal Friction and Dissipation 

Real materials are never perfectly elastic. Thus, when a material specimen is subjected to 
dynamic loading, part of its mechanical energy is converted into heat. The various micro
structural mechanisms by which the mechanical energy is converted into heat is conventionally 
referred to as "internal friction" Kolsky, 1963). Due to the complexity of the 
microstructures, several microscopic and macroscopic dissipative mechanisms exist in the 
material. The extent of energy loss would generally depend on the input load characteristics, 
the environmental conditions, as well as the inherent and macroscopic properties of the 
material specimen. 

An internal dissipative mechanism in case of polycrystalline solids, for instance, is due 
to the variation in crystallographic orientation of neighbouring grains. This results in 
nonuniformity of the distribution of local strains when the material specimen is loaded. This 
is in addition to the nonuniformity of local strains that may be caused by imperfections in the 
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material (e.g., micro- cracks, fissures, flaws, foreign inclusions and grain boundaries). 
Consequently, a nonuniform temperature field may exist and thermal currents of varying 
magnitudes would flow within the crystal lattice. Other microscopic mechanisms could be 
also responsible for the transfer of energy into heat. One mechanism is due to dislocations, 
that is the movement of regions of disarray in the crystals (see, e.g.,Orowan, 1934; Polanyi, 
1934 and Bradfield, 1951). An additional microscopic mechanism is due to the motion of 
solute atoms in the crystal lattice on the application of external loading (e.g., Gorsky, 1936 
and Snoek, 1941 ). A possible microscopic mechanism which attenuates stress waves in 
polycrystalline solids is "scattering" (e.g., Kolsky, 1963). This mechanism may occur in a 
polycrystalline solid when the incident wavelength becomes comparable with the grain size. 
In this, Mason and McSkimin (1947), for instance, found that when the wave length is long 
compared to the grain size, the attenuation is inversely proportional to fourth power of the 
wavelength (see Rayleigh, 1894). 

On the macroscopic level, the following effects of internal friction are particularly 
important. 

(i) Static Hysteresis 
This is primarily due to the inelastic characteristics of the material. In this case, when a 
material specimen is taken through a stress cycle, it would show a "hysteresis loop", that is 
the stress-strain curve for an increasing stress input does not retrace its earlier downward 
path, if the material specimen were reloaded in an exact manner reflecting the unloading. The 
area enclosed by this loop represents mechanical energy which has been dissipated into heat. 
Although this effect may seem to be insignificant for some materials under static loading, it 
could be a pronounced factor in the attenuation of stress waves travelling in such materials. 
In the latter case, each layer of the material is taken through a loading cycle. For sinusoidal 
oscillations, for example, the number of hysteresis cycles is dependent on the frequency and 
the latter may be of the order of millions per second. 

(ii) Viscous Loss 
Such a loss is particularly noticeable in case of polymers with organic long chain molecules. 

The internal forces here are of a viscous nature and imply that the mechanical behaviour of 
such materials is a function of the rate of strain (see, e.g., Tobolosky, Powell and Eyring, 
1943; Alfrey, 1948 and Kolsky, 1963). In case of viscoelastic materials, it is recognized that 
stress waves whose periods are close to the relaxation times of the material are severely 
attenuated when passing through it (Kolsky, 1963). In metallic materials, however, the 
dissipative mechanism tends to be more related to their macroscopic thermal properties 
(Zener, 1948). 

(iii) Stress Wave Motion Effect 
In this, the compression and dilatation due to the stress wave motion in the material produce 
temperature gradients. Thus, the finite thermal conductivity of the solid would be an 
influential mechanism by which the mechanical energy of waves may dissipate as thermal 
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energy. 

Internal friction in solids is often defined by the so-called "specific loss" or, 
alternatively, "specific damping" of the specimen. It is denoted by the symbol D and is 
conventionally expressed by 

D = !J.W 
w (14.1) 

In the above relation, !J. W is the energy dissipated upon subjecting the specimen to a stress 
cycle and W is the elastic energy stored in the specimen during this cycle. The magnitude 
of D depends on the amplitude and the speed of the cycle, other boundary conditions, as 
well as the past history of the specimen. The reader is referred to Kolsky (1963) for other 
definitions of internal friction and its measurement. 

Mechanical dissipation is particularly pronounced in case of viscoelastic materials, 
particularly those of high polymeric origin. In most of these materials, the presence of 
mechanical dissipation can effectively change the nature of wave motion in them. In addition 
to the significant mechanical dissipation that can occur in viscoelastic materials, it is well
recognized that these materials are "dispersive"- In view of the latter property, phase velocity 
of a wave propagating in a viscoelastic material will depend on wave frequency. More 
specifically, waves of high frequency will propagate in viscoelastic materials with a greater 
phase velocity than if these waves have a low frequency. Consequently, a mechanical 
disturbance would continually change in shape during its motion in a viscoelastic medium. 
Further, the attenuation of high frequency waves in viscoelastic materials is greater than that 
of waves of low frequency. In case of sinusoidal waves, for instance, the above two 
characteristics of wave motion in a viscoelastic medium would translate into a differential 
absorption as well as a differential dispersion of the Fourier components of the pulse (Kolsky, 
1963). 

14.3. Viscoelastic Wave Motion 

As realized in Section 2 of this chapter, the constitutive equation for a particular material 
must be combined with the equations of motion in order to solve a specific problem 
concerning the wave propagation in such material. In contrast to the situation in linear 
elasticity, the viscoelastic constitutive equation, even in the linear case, is complex by virtue 
of the existence ofintegro-differential terms in this equation and the time-dependency of the 
viscoelastic material functions involved. This added complexity has limited quite significantly 
the progress in dynamic viscoelasticity in general. Consequently, the majority of problems 
that have been successfully treated concerning viscoelastic wave phenomena have been limited 
to simple material representation. A large number of viscoelastic wave propagation problems, 
within the linear response behaviour of the material, have been attempted by different 
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researchers using a correspondence with an available or deductible solution of an analogous 
linear elastic problem. 

Kolsky (1956,1960) presented a comprehensive review ofthe subject ofviscoelastic 
waves in solids from both theoretical and experimental points of view. In his treatment of the 
subject matter, Kolsky employed the superposition property of solutions in linear 
viscoelasticity through the application of Fourier analysis. Kolsky (1960) considered, for 
instance, the motion of a longitudinal disturbance along a thin filament. In this context, the 
equation of motion along the filament is expressed by 

~: = p[ ::~ l (14.2) 

where a is the longitudinal stress, x is the distance along the filament, u is the longitudinal 
displacement and p is the density. For a sinusoidal wave propagating in a linear visco
elastic solid, the stress is related to the strain through a complex modulus representation (see 
Chapter 3), 

a = (E1 + iE2 )€ = (E, + iE2) ~ (14.3) 

Combining (14.2) and (14.3), then 

(14.4) 

The solution of (14.4) for a propagating sinusoidal wave of frequency w/21t, whose 
displacement at the origin is u0 cos wt, is expressed as 

u(x) = u0 exp(- at) cos[w(t -xlc)] (14.5) 

where, 

c = (E */p}112 sec ()/2 (14.6) 

a = wlc tan fJ/2 (14.7) 
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(14.8) 

(14.9) 

On the assumption that, for most polymers, tan o << 1, then, sec o/2 "' 1 and tan 5/2 "' Y2 
tan o. Thus, (14.6) and (14.7) are, respectively, reduced to 

c = JE * /p and a = ( ~) tan o (14.10) 

where c and a are referred to as "propagation constants". Accordingly, if the values of the 
moduli E1 and Ez (or E* and tan o) are known from experiment over a sufficient frequency 
range, the displacement of the disturbance along the filament may be calculated by (14.5) with 
the use of (14.1 0). 

From an experimental point of view, two types of disturbance inputs are often 
considered for the study of wave propagation in materials, i.e., sinusoidal waves and pulse 
inputs (e.g., Hillier, 1949, 1960, Hillier and Kolsky, 1949 and Kolsky, 1960). 

14.3.1. SINUSOIDAL INPUTS 

For this type of disturbance input, continuous trains, of small amplitude of vibration, are 
propagated along filaments of the material. As introduced in the foregoing, if the 
displacement input on one end of the specimen is u0 cos wt, then, the displacement at a 
distance x along the filament is given by (14.5). Hence, by measuring the amplitude and 
phase of the vibration at different points along the filament, the propagation constants c and 
a can be determined from (14.5). Consequently E* and tan o (or E1 and E2) as functions 
offrequency w/2rr. are found from (14.6) or (14.7). Hillier and Kolsky (1949) and Bailon 
and Smith (1949), for instance, have used this method for the determination of the dynamic 
properties of viscoelastic materials such as rubber and plastics in the range of 102 - 103 cycles 
per second (e.g., Kolsky, 1960). 

For a linear viscoelastic solid, provided that E1 is not changing too rapidly with 
frequency, one may write (Ferry and Williams, 1952) that 

dw rr.w 
(14.11) -"'-
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which can be written in view of(14.9) as 

_d(_lo_g_E.::_l) "' ( ~) tan a 
d(log w) 1t 

(14.12) 

For most polymers, at temperatures near their transition from the rubber-like to the glassy-like 
temperature, tan a varies comparatively little with frequency (see, e.g., Nashif et al., 1965). 
For this case, one may assume, that tan a is constant (i.e. independent of frequency). Under 
the latter assumption, Eqn. (14 .12) may be integrated to give 

(14.13) 

where E1(w0) is the value of E1 at a fixed reference frequency wof21t. Further, if one 
assumes, as mentioned before, that tan a<< 1, one can express the propagation constants 
a and c, with reference to (14.6) to (14.10), as 

c"' /ElP and a=~tana 
2c 

Meantime, equation ( 14.13) is approximated further as 

(14.14) 

(14.15) 

whereby the exponential term in ( 14.13) has been expanded asymptotically and the first two 
terms in the expansion are retained. Accordingly, one writes with reference to (14.14) that 

C "' c0 [1 + {2(tana)/1t}log( :J r (14.16a) 

where, 

(14.16b) 

Fig. 14.1 (Kolsky, 1960, Experimental results after Hillier, 1949) supports a linear relation 
between c and log w for polyethylene in the frequency range shown. 
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Figure 14.1. Experimental values of phase velocity c and log a (Hillier, 1949) plotted 
against log frequency. for polyethylene. From: Kolsky, H. (1960) Viscoelastic waves, Int. 
Symposium on Stress Wave Propagation in Materials, Ed. N. Davids, Interscience 
Publishers, New York, pp. 59-90. Reprinted with permission. 
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With reference to (14.10), if tan o is constant, the attenuation constant a would be 
proportional to w/c. Further, since the phase velocity c varies comparatively slowly with 
frequency, over a limited frequency range, Eqn. (14.16), one may expect that the attenuation 
constant a, Eqn. (14.14), to be proportional to the frequency. Accordingly, log a should 
vary linearly with log w as shown by the graph by Hillier (1949) in Fig. 14.1. 

For the study of viscoelastic wave propagation at higher frequencies, pulsed ultrasonic 
methods are used (see, for example, Ivey et al, 1949 and Cunningham and Ivey, 1956). The 
experimental practice ofthe technique could vary quite significantly, however, in principle, 
a finite number of sinusoidal cycles of frequency w/2rr. are introduced in one end of the 
specimen and the resultant wave motion is recorded at a number of points along the length 
of the specimen. From a measurement of transient time and amplitude ratio, estimates of the 
phase velocity c( w) and the attenuation constant a( w) can be made. The ultrasonic 
technique has the advantage of being relatively simple. It is particularly powerful for 



www.manaraa.com

224 

investigating the wave propagation properties in elastic materials. In case of viscoelastic 
materials, however, the technique unfortunately suffers from certain theoretical difficulties of 
interpretation as pointed out by Kolsky (1960): The time of transit of the pulse depends on 
the group velocity of the wave packet, and for a dispersive medium, this is, in general, 
different from the phase velocity c. In the absence of attenuation, these two velocities can 
be related (Kolsky, 1963), however, in a medium which is dissipative as well as dispersive, 
the relation between group velocity and phase velocity is not clear yet. 

14.3.2. PULSE INPUTS 

Few experimental research efforts have been focussed on the study of pulse propagation in 
viscoelastic materials. In the early work of Hillier (1949) and Hillier and Kolsky (1949, 1956) 
steady-state longitudinal vibrations were induced in prest retched filaments (0.06 em. in 
diameter) ofpolythene, neoprene and nylon by means of a transducer element attached to one 
end of the material specimen. The experimental studies were carried out within low frequency 
range < 16 kc/s. The response of the filament was determined at various points along its 
length by means of a crystal pick-up. In this, measurements were taken of the variations in 
the vibration amplitude and the phase. After allowing for the effect of pick-up (see Hunter, 
1960), the experimental results included both phase velocity and attenuation at a number of 
frequencies. Kolsky (1956), presented experimental results after Hillier (1949) which show 
the phase velocity and attenuation in polythene (I.C.I. Alkathene grad 20) against frequency 
for experiments carried out at lO"C. 

Kolsky (1954 a and b, 1956) has carried out a number of experiments on the change 
of the shape oflongitudinal stress pulses as they travel along rods of various plastics. These 
pulses were produced by the detonation of small explosive charges with initial durations of 
about two or three microseconds. Figure 14.2 shows oscillograph records which were 
obtained by Kolsky (1960) with rods ofpolymethyl methacrylate and polyethylene. As noted 
by Kolsky (1960), with the polyethylene specimen, after two or three reflections, the length 
of the pulse had become more than twice the length of the specimen, with the result that the 
movement of the ends of the specimen become continuous. Figure 14.3 (due to Kolsky, 1960) 
shows the curves of particle velocity with the passage of time for pulses which had 
propagated in polyethylene rods 30, 60 and 90 em in length. It can be seen in the figure that 
the pulses become progressively flatter, but retain an asymmetrical shape. 

14.4. Wave Propagation in Semi-Infinite Media 

In this section, we deal with the problem of determining the stress distribution in a semi
infinite viscoelastic rod subject to dynamic loading. The problem was examined by Lee and 
Morrison (1956). In Lee and Morrison's work, the stress and velocity distributions associated 
with the propagation of an impulsively applied velocity and stress along viscoelastic rods, as 
presented by different mechanical models, were determined. Morrison (1956) also considered 
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analytically the wave propagation in a viscoelastic rod of the Voigt model type and also 
studied viscoelastic materials with three-parameter models. In an earlier work, Hillier (1949), 
see also Hillier and Kolsky ( 1949), studied the motion of longitudinal sinusoidal waves along 
a viscoelastic filament assuming a Maxwell solid, a Voigt solid and a three-element model 
representations. Lee and Kanter (1953), considered the stress distribution in a rod of 
Maxwell material subjected to a mechanical impact. Glauz and Lee (1954), on the other 
hand, used the method of characteristics to determine the stress in a viscoelastic material 
made of a four-parameter model. 

Figure 14. 2. (a) Oscillograph record of displacement at end of polymethyl methacrylate rod 
46 em long and 1.25 em diam. when 5 mg charge oflead has been detonated at opposite 
end. Period of timing wave is 500 microseconds. (b) Oscillograph record, similar to (a), 
for polyethylene rod 20 em long and 1.25 em diam. From: Kolsky, H. (1960) Viscoelastic 
Waves, Int. Symposium on Stress Wave Propagation in Materials, Ed. N. Davids, 
Interscience Publishers, London, pp. 59-90. Reprinted with permission. 
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Figure 14.3. Curves of particle velocity distributions for pulses that have travelled through 

different lengths of polyethylene rods. A, 30 em; B, 60 em; C, 90 em. From: Kolsky, H. 

(1960) Viscoelastic Waves, Int. Symposium on Stress Wave Propagation in Materials, Ed. 

N. Davids, Interscience Publishers, London, pp. 59-89. Reprinted with permission. 
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Consider a semi-infinite rod as shown in Fig. 14.4 where x :?c 0, with the x-coordinate 

measured along the length of the rod. In this figure, x(t) denotes the position of a section of 

the rod at time t and u (x,t) is the displacement of this section in the direction of increasing 

x. Let, a (x, t) denote the nominal compressive stress transmitted across the section x of the 

rod at time t. E (x, t) designate the nominal compressive strain corresponding to a (x,t) 

above . p is the mass density of the material the governing equation of motion, in the absence 

of body forces, in the x-direction is 

or, in a more compact form, 

-a 
X (14.17) 
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where a subscript denotes partial differentiation with respect to the corresponding variable. 

0 
I 
I r-- u(x,t) 

I 

x(t) 

X 

Figure 14.4. Stress wave propagation in a semi-infinite rod. 

The nominal compressive strain E(x,t) is written in terms of the displacement u as 

(14.18) 

The particle velocity v (x, t) is expressed in terms of the displacement u as 
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(14.19) 

The semi-infinite rod is considered to be initially unstrained and at rest when, at t=O, the end 
x=O is subjected to a mechanical impact (disturbance) with either a constant stress or a 
constant velocity. In either case, the stress or the velocity at the end x=O is specified. The 
governing boundary conditions are 

at x = 0 (14.20) 

where o0 is the applied constant stress, v0 is the applied constant velocity and H(t) is the 
Heaviside step function, that is 

{
I for t>O 

H(t) = 
0 for t<O 

In addition to equations (14.17) to (14.20), the constitutive equation for the particular 
viscoelastic material must be included in the process of determining the stress distribution in 
the semi-infinite rod. 

14.5. The Wave Equation in Linear Viscoelasticity as Based on Boltzmann's 
Superposition Principle 

Consider a homogeneous, isotropic rod and let Xi (i=l,2,3) denote the Cartesian coordinates 
of any material particle p in the deformed (current) state. For the longitudinal motion of the 
rod in the x1-direction, the displacement is expressed as 

(14.21) 

where e1 is the unit vector component along the x1-axis. It is assumed here that the 
displacement u(x,t) is a continuous function of x,t for all x,t. In this case, E 11(x1,t) and 
o 11(x1,t) will be the only corresponding nonvanishing components of the strain and stress, 
respectively, where 

(14.22) 

and the stress is connected to the strain via the Boltzmann's hereditary creep and relaxation 
constitutive equations introduced in Chapter 12 (see, also, Haddad, 1995) Recalling the latter 
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two equations, one may write in the same order that 

(14.23) 

and 

(14.24) 

Meantime, the equation of motion can be written, in the absence ofbody forces as 

p a2u(x,t) = ao(x,t) 

at 2 ax (14.25) 

Combining now (14.23) and (14.25), the creep wave equation, in the absence of body forces, 
can be written as 

(14.26) 

where c2 = E/p (14.27) 

Further, with reference to (14.24) and (14.25), the relaxation wave equation, in the absence 
ofbody forces, is 

2 t 2 a u(x,t) = J R(t -1:) a u(x,t) d1: 
ax 2 ax 2 

0 

(14.28) 

with c~E/p 

The Laplace transforms of the wave equations (14.26) and (14.28) read, respectively, as 
follows 
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- u(x,s) = - 1 + F(s) u(x,s) d 2 - ( s) 2{ - }-

dx 2 c 
(14.29) 

and 

-u(x,s) = - 1 + R(s) - u(x,s) d 2 - (s) 2{- }1-
dx 2 c 

(14.30) 

Considering, for instance, equation (14.29) corresponding to the creep case, the 
general transform solution can be written (Graffi, 1982) as 

- {XS~} u(x,s) = A(s)exp -zv 1 + F(s) 

+ B(s)exp{ -:s .jJ +F(s)} 

(14.31) 

where A(s) and B(s) are functions of the Laplace parameters. Both A(s) and B(s) are to 
be determined. 

At this point, we shall assume that the rod is semi-infinite in extent and initially 
undisturbed in the sense that 

u(x,O) = au~~,O) = 0 (14.32) 

The following boundary conditions are further assumed 

u(O,t) = u0(t) t ;:.: 0 

Lim u(x,t) = 0 (14.33) 
x-oo 

In this case, one must impose that A(s)=O in (14.31) in order to avoid the exponential 
increase with x of the first term in this equation. Thus, B(s) in (14.31) will assume the value 
of the Laplace transform of the input u0 (t) and (14.31) becomes 

(14.34) 
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the inversion of the Laplace transforms in (14.34) leads to 

u(x,t) = H(t-x/c)ecxxtc {u0(t-x/c) 
t-xlc 

+ J F(x,t --c -xlc)uo("t)d-c} 
0 
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(14.35) 

in which H( · ) is the Heaviside step function and where the translation and convolution 
formulae for the Laplace transform (see Appendix C) were used. Another representation of 
the solution (14.35) is due to Mainardi and Turchetti (1975,1979). Mainardi and Nervosi 
( 1980) have also considered the inclusion of such presentation in their treatment of transient 
waves in a viscoelastic rod. Similar treatment may be considered for the relaxation case based 
on equation (14.30). 

14.6. The Wave Propagation Problem as Based on the Correspondence Principle 

In this section, a presentation is given, following Chao and Achenbach (1964), on the 
utilization of the correspondence principle to solve wave propagation problems in linear 
viscoelasticity when the solutions of the corresponding elastic problems are known. 

The constitutive equations for an isotropic, elastic solid are given in Chapter 6 With 
reference to these equations, it is recognized that for an isotropic, elastic solid, two 
independent constants completely define the stress-strain relations. If the shear modulus ll 
and the bulk modulus K, for instance, are chosen, the constitutive equation, for a linear elastic 
solid, can be written in the following tensorial form 

(14.36) 

On the other hand, the constitutive relations for the creep of an isotropic, viscoelastic solid 
can be written as 

(14.37a) 

(14.37b) 

in which Fk) and Fz(-) are the creep functions governing, respectively, the shear and 
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dilatational behaviours of the medium. The treatment of stress-wave propagation in a 
viscoelastic solid which obeys the constitutive relations leads to complicated mathematical 
analysis in that the solution of partial integra-differential equations is involved. Volterra 
(1931} considered the problem by adopting a functional analysis approach, but it seems that 
the results of the theory have found, so far, little application in the study of the dynamic 
behaviour ofviscoelastic materials (see, e.g., Kolsky, 1963). 

Chao and Achenbach (1964} discussed the application of Laplace transform to 
viscoelastic wave propagation problems using the well-known correspondence principle 
(Bland, 1960 and Schapery, 1974). It was shown by these authors that under the restricted 
condition of constant Poisson's ratio, a class of viscoelastic problems may be solved provided 
that the solution of the corresponding elastic problem is known. Applying Laplace transform 
to (14.37a) and (14.37b}, with some additional manipulation, yields 

where 

f!(s) 

and 

K(s) 

fl f.1 ~(s) 

__ K_ = Ky(s) 
1 + sF2(s) 

where s is the Laplace transform parameter. 

(14.38a) 

(14.38b) 

(14.38c) 

Meantime, the Laplace transform of the stress equation of motion , in the absence of body 
forces, can be written as, 

(14.39) 

where p is the mass density of the material. 

Combining (14.38) and (14.39) yields the governing differential equations for the 
transformed displacements of a viscoelastic medium, that is 

(- 1-)- - -K + - fl u. .. + u u. .. = p s 2 u . 3 JJI IJJ I (14.40) 
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Decomposing the displacement vector u into dilatational and rotational parts, i.e. 

u = v + w 

where 

v. . = 0 and w. . = w . . 
I, I l,j J, I 

Accordingly, the transformed equations (14.40) will be satisfied if 

s2 -

- -

v ... -v. 
l,jj - 2 I 

c, 

s2-
w ... = -w. 

l,jj - 2 I 

c2 

(14.41) 

(14.42) 

(14.43) 

(14.44) 

where c1 and c2 are the transformed velocities for the dilatational and rotational waves 
respectively, i.e. 

(14.45) 

(14.46) 

The same treatment may be applied for the isotropic, elastic medium if the constitutive 
equation (14.36) is used instead of(14.38a). On the other hand, the analogous equations to 
(14.43) and (14.44) for the isotropic, elastic body are obtained if ~(s) and K(s) in (14.38b) 
and (14.38c) are replaced by the elastic moduli ll and K respectively. The above treatment 
was presented by Chao and Achenbach (1964) with the following conclusion: The Laplace 
transforms of the solutions for a viscoelastic wave propagation problem can be obtained from 
the Laplace transforms of the solutions for the elastic problem with the same boundary and 
initial conditions by replacing the shear modulus ll by its Laplace transform ~(s) and the 
bulk modulus K by its Laplace transform K(s). 

The above conclusion is, in essence, a form of the well-known correspondence 
principle; that is the problem of obtaining solutions concerning the response behaviour of a 
linear viscoelastic solid is reduced to a problem of inverting the Laplace transforms of the 
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corresponding elastic solutions. 

Chao and Achenbach (1964), see, also, Achenbach amd Chao, 1962, considered the 
application of the above approach to the study of the displacement and stress fields inside an 
infinite, viscoelastic body of a constant Poisson's ratio. In their treatment, the authors 
assumed the input force to be time-dependent and concentrated at one point. Two illustrative 
examples were subsequently given. In the first example, the displacement components in the 
radial and the vertical directions on the surface of a viscoelastic half-space loaded suddenly 
by a vertical force of constant magnitude were evaluated. In the second example, the radial 
stress for the problem of the expanding spherical cavity in an infinite viscoelastic medium was 
dealt with. 

14.7. Nonlinear Viscoelastic Wave Propagation 

Although considerable research efforts have been made over the last decades towards 
characterization of the nonlinear viscoelastic nature of materials (e.g., Haddad, 1995), interest 
in the study of wave propagation in such materials did not develop until recently. Most of the 
studies on wave propagation in nonlinear viscoelastic materials dealt essentially with the one
dimensional motion within the context of the general constitutive theory of materials with 
fading memory. These studies have considered the propagation of both acceleration and 
shock waves in viscoelastic media with the objective of establishing the governing conditions 
for their growth or decay. Such governing conditions implied the existence of steady waves 
in the dissipative viscoelastic media. An initial study in the area of nonlinear wave 
propagation is due to Malvern (1951 ). Malvern's approach is concerned with the motion of 
a plastic wave in a ductile material (e.g. a metal with a strain memory effect). As a special 
case, however, Malvern considered the motion of such type ofwave in a model ofviscoelastic 
solid. The modes of propagation of acceleration waves in different media have been studied, 
among others, by Truesdell and Toupin (1960), Thomas (1961), Hill (1962), Varley and 
Cumberbatch (1965), Coleman, Gurtin and Herrera (1965), Coleman and Gurtin (1965) and 
Bailey and Chen (1971). Varley (1965) discussed the mode of propagation of an arbitrary 
acceleration wave as it advances into a finitely strained viscoelastic material which, until the 
arrival of the front is undergoing any admissible deformation. The viscoelastic material is 
seen in Varley's work to be generally inhomogeneous and anisotropic. Coleman, Gurtin and 
Herrera (1965) and Coleman and Gurtin (1965) dealt comprehensively with the theory of 
nonlinear viscoelastic wave propagation in a series of research papers. In the first two papers 
of the series, the authors dealt with the propagation of shock and acceleration fronts in 
materials with memory resting on the assumption that the stress is a functional of the history 
of the deformation gradient with the exclusion of any thermal influences. In subsequent two 
papers (Parts III and IV of the series), Coleman and Gurtin (1965) have allowed the stress 
to be affected not only by the history of strain, but also by the history of a thermodynamic 
variable such as the temperature (see, also, Coleman, 1964 and Coleman and Gurtin, 1966). 
An extension of this work to include mild discontinuities was considered by Coleman, 
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Greenberg and Gurtin ( 1966). The problem of propagation of steady shock waves in nonlinear 
thermoviscoelastic solids has been also considered, for instance, by Ahrens and Duvall ( 1966), 
Greenberg (1967), Chen, Gurtin and Walsh (1970), Schuler and Walsh (1971), Dunwoody 
(1972), Huilgol (1973) and Nunziato and Walsh (1973). In this, Nunziato and Walsh (1973) 
expressed the governing equations in terms of material response functions which can be 
determined from shock wave, thermophysical, and bulk response data. The results of the 
analysis were compared with experimental steady wave studies concerning the solid polymer, 
polymethyl methacrylate (PMMA). The existence and propagation of steady waves in a class 
of dissipative materials were considered also, among others, by Greenberg ( 1968) and Schuler 
(1970). 

On the experimental side, research in the field of shock wave physics has made it 
possible to produce high amplitude strain waves. Barker and Hollenbach (1970) and Schuler 
( 1970) used a gas gun (Barker and Hollenbach, 1964 & 1965) to produce a planar impact 
between two plates. This has been parallel with the development of advanced recording and 
measurement techniques such as laser inter-ferometry (Barker and Hollenbach, 1964, 1965 
& 1970 and Barker, 1968). Such experimental efforts were particularly effective in the 
production of one-dimensional strains ofvery large amplitude, meantime, they allowed wave 
motion to be observed with high resolution and accuracy. Chen and Gurtin (1972 a and b) 
discussed the use of experimental results concerning steady shock waves to predict the 
acceleration wave response of nonlinear viscoelastic materials. Meantime, Nunziato and 
Sutherland (1973) used acoustic waves for the determination of stress relaxation functions 
of a class of polymeric materials. 

Schuler, Nunziato and Walsh (1973) presented a comprehensive review of some 
theoretical and experimental developments in the domain of nonlinear viscoelastic wave 
propagation. Confining their attention to the case of one-dimensional strain, they reviewed 
theories of shock and acceleration wave propagation in materials with memory and discussed 
the theoretical predictions with some experimental results for the polymeric solid PMMA. 
In this, these authors were particularly influenced by the work of Coleman, Gurtin and 
Herrera (1965 a and b), Coleman and Gurtin (1965) and Chen and Gurtin (1970). We follow 
closely the work of these authors in the following presentation. 

14.7.1 KINEMATICS AND BALANCE LAWS IN ONE-DIMENSIONAL MOTION 

Kinematics 
In the case of one-dimensional motion, we identify the spatial position of a material point 
(particle) at time t by the coordinate x (X,t). The counterpart of this position coordinate 
in the reference configuration, R, is X(x,t). It is assumed that the coordinate function x(X,t) 
is continuous for all X and t. The corresponding displacement function u(X,t) is, thus, a 
continuous function of X,t for all X and t. Assuming suitable smoothness of the motion 
(Schuler, Nunziato and Walsh, 1973) the particle velocity is expressed by 
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a v(t) = - u(X,t) = at u(X,t) at 

and the compressive strain is expressed by 

e(t) = ~ u(X,t) = -a u(X,t) ax x 

(14.47) 

(14.48) 

A wave propagating in such continuous medium may be seen (Coleman and Gurtin, 1965) as 
a family of points X ( t) , - oo < t < oo , where x ( t) is the material point in the reference 
configuration R at which the wave front is to be found at time t. Thus, the spatial position 
of the wave may be expressed by 

-\ A (-\ ) x(t) = x X(t),t (14.49) 

with X (t)designating the spatial position of the wave at time t. 

The "wave velocity" V(t) at time t is defined by 

d A d A( A ) V(t) = - x(t) = - x X(t),t 
dt dt 

(14.50) 

The wave velocity V(lj is identified with respect to an external fixed frame of reference (i.e., 
as seen by an external observer at rest). 

Meantime, the wave "intrinsic velocity" U(lj is defined as the velocity of propagation of the 
wave front relative to the material in the reference configuration. It is expressed as 

U(t) = _! :;((t) 
dt 

(14.51) 

where x (t), as defined earlier, is the coordinate of the material point in the reference 
configuration R at which the wave front is to be found at time t. 

The "material trajectory" of the wave front is given here the notation O(t). It is defined as 
the set of ordered pairs x (t), ( t), - oo < t <"" . 

Jump Discontinuity. Coleman, Gurtin and Herrera (1965), following the standard notation 
used earlier by Truesdell and Toupin (1960), advanced that if a function f{X,t) has a jump 
discontinuity at X =X (t), one may define the jump in f (X,t), labeled below by [t], across 
the trajectory of the wave Q (t) at time t by 
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[f] = Lim ~X,t)- Lim ~X,t) 

X-X(tr X-X(t)' 
(14.52a) 

This expression may be also written in the form 

lfl = r- -f· (14.52b) 

where, with the wave intrinsic velocity U(t) > 0, r and f are the limiting values of the 
function ~X,t) immediately ahead and behind the wave front respectively. The associated 
"condition of compatibility" to is expressed (Truesdell and Toupin, 1960) as 

(14.53) 

In the present section, the function f: f (X, t) is used to designate the kinematical function 
x (X, t) or one of its derivatives. 

Balance Laws 
Mass Balance. In one-dimensional motion, the mass balance is expressed with reference to 
(1.2:3) as 

1 p(X,t)/p0 = ---
1 -e(X,t) (14.54) 

where p (X, t) is the current mass density and p0 is the mass density in the reference 
configuration of the material specimen. 

Balances of Linear Momentum and Energy. With the exclusion of external body forces, heat 
conduction and external heat supply, the balances of linear momentum and energy are 
expressed respectively as 

and 

Xp 

_!J Po v(x,t)dx = o(xp,t) - o(x .. ,t) 
dt (14.55) 
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(14.56) 

- o(x .. ,t)v(x .. ,t) 

where o is the one-dimensional stress and e is the internal energy per unit volume. 

Clausius-Duhem Inequality (Second Law of Thermodynamics) 
It can be expressed as (see, also, Chapter 4) 

Xp 
d -JP c;;(x,t) ~ 0 
dt 

where c;; is the specific entropy per unit mass. 

14.7.2. MATERIAL RESPONSE FUNCTIONS 

(14.57) 

Following Schuler, Nunziato and Walsh (1973), we consider a strain jump E suddenly 
applied to a material point which has been unstrained for all past times, i.e., 

c<O, c>O 
(14.58) 

The instantaneous stress, denoted by oi> corresponding to the strain jump, is expressed in the 
following functional format 

(14.59) 

In (14.59), the constitutive functional F(E) is assumed to be twice continuously 
differentiable, i.e., a.F{E(t--c)} and 2/F{E(t--c)} exist where the partial differentiation is 
with respect to the present value of strain E(t); see, e.g., Haddad (1995). 

The stress-relaxation function corresponding to the strain history (14.58) is designated 
by R(E; -c). Meantime, the "instantaneous tangent modulus" is designated by ElE) where 
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do (e) 
E1(e) = + = R(e;O) (14.60a) 

Similarly, the "instantaneous second-order modulus", ~-'is defined by 
I 

(14.60b) 

On the other hand, the equilibrium response of the material may be expressed as 

(14.61) 

From which, the "equilibrium tangent modulus" is given as 

(14.62) 

Thus, the "equilibrium second-order modulus", ~-(E), is identified by 
I 

(14.63) 

Schuler, Nunziato and Walsh (1973) have imposed certain curvature conditions on 

the constitutive functional F(E) of(14.59). They advanced that these conditions would hold 

valid for most of viscoelastic materials. These conditions may be presented as follows: 

For all E on (0,1) and all t" on (O,oo), 

(14.64) 

v v 
E (E)>O, E (E)>O 

I E 
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The inequalities under (i) above imply that the instantaneous and equilibrium stress-strain 
curves are strictly convex from below and the instantaneous response curve lies everywhere 
above the equilibrium curve as shown in Fig.14.5. It is assumed in the latter figure that a, (0) 
= aE (0) = 0. Meantime, the inequalities under (ii) above affirm that for all strain histories on 
(0, 1 ), the stress relaxation function is positive and a monotonically decreasing function of the 
elapsed time 1:. Gurtin and Herrera (1965) have also discussed these inequalities, (ii) above, 
within the context of linear viscoelasticity. 

(ii) R(E(t-1:),1:)>0, R 1(E(t-'t),'t)~O 

where R' (E(t -1:),1:) ~R((t-'t),t) 
a't 

v a 

V (oo) 

a E {l(oo)) 

(. 0 

V (oo) ---- - -:..:-~-:..---

v(0) 

{b) 

(14.65) 

aE 

l (oo) 

Figure 14.5. Steady wave solutions (Curvature conditions imposed on the instantaneous 
and equilibrium stress-strain curves). "Reprinted with permission from Int. J. Solids 
Structures, Vol.9, Schuler, K.W., Nunziato, J.W. and Walsh, E.K., Recent Results in 
Nonlinear Viscoelastic Wave Propagation, pp. 1237-81, 1973, Pergamon Press Ltd." 
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14.8. Acceleration Waves 

The subject of acceleration wave propagation in nonlinear materials with fading time
memory has been considered by, amongst others, Truesdell and Toupin (1960), Varley 
(1965), Coleman, Gurtin and Harrera (1965), Coleman and Gurtin (1965), Bailey and Chen 
(1971) and Schuler, Nunziato and Walsh (1973). 

Definition 
CQleman and Gurtin (1965) advanced that if the following two conditions are satisfied, then 
X (t), -"" < t < "", is an acceleration wave. 

A-1: x (X;t), x (X;r) and the deformation gradient F are continuous functions of X and 
't jointly for all X and 't, while X (X, 't)' a F (X, -r) ;a X, F (X, 't) have jump 
discontinuities across the wave material trajectory, but are continuous in X and -r 
jointly everywhere else. 

A-2: the past history of the deformation gradient,Fr1 (Xi), is a smooth function of X and 
t with respect to the norm I I · I I r · F rt (X , · ) is the restriction on the history of 
the deformation gradient F(t--r) to its domain of definition (0, co). 

The condition (A-2) limits the wildness of the past history for the material with 
memory. 

Coleman and Gurtin (1965) considered, within the general linear theory of simple 
materials with fading memory, the case when an acceleration wave which since t=O has been 
propagating into a region which had been previously at rest in a fixed homogeneous 
configuration R. For this case, it was remarkoo by these authors that the hypothesis A-2 
above follows from hypothesis A-1 for all X> X (0) and t > 0. In other words, whenever 
the acceleration front is entering a homogeneous medium at rest, the hypothesis A-1 would 
generally suffice to ensure that F/(X, ·) is a smooth function of X and t with respect to the 
norm II · I I r· 

Thus, following the condition A-1 above, the compatibility condition (11.53) and 
taking f (X, t) = e (X, t), one can write at X = X (t) that 

[v] = U[€] = U 2[axe] (14.66) 

Following (8.8:5), the stress and the internal energy must also be discontinuous at X= X (t). 
Thus, with reference to (8.8:8), the balance of linear momentum asserts that 

[o] = Po U[v], [ap] = - p0[v] (14.67) 
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Also, the balance of energy implies that 

-U[e + l.p0v 2] = [ov], [e] = [o€] 
2 

(e.g., Schuler, Nunziato and Walsh, 1973). 

(14.68) 

The jump in the particle acceleration is conventionally taken as the amplitude of the 
wave front. Denoting the latter at any instant of time by a(t), then 

a(t) = [v](t) (14.69) 

Based on purely kinematical considerations, Coleman and Gurtin (1965) affirmed that the 
amplitude of an acceleration wave obeys the following relationship 

2 da _ _!, dU = [x]-U2a:F 
dt u dE ax (14.70) 

where, as introduced earlier U = U(t) is the intrinsic wave velocity and E1 is the 
instantaneous tangent modulus. As an alternate expression to (14.70), Coleman and Gurtin 
(1965) advanced the following equation for the amplitude of an acceleration wave using 
condition A-1 and the balance of momentum equation (14.67). 

2 da = .!.. dU + _!_[ a2o ]-u2[at] 
dt u dt Po atax ax (14.71) 

Meantime, Coleman, Gurtin and Herrera (1965) indicated that the intrinsic velocity 
U of an acceleration wave satisfies the equation 

(14.72) 

In this equation, R(O) is the instantaneous tangent modulus corresponding to the history 
p<tl (X (t),. )i.e., 

do (e) 
R(O) = - 1-l _ dE e-O 

(14.73) 

Thus, eqn. ( 14. 72) implies that the intrinsic velocity of an acceleration wave U=U0 is a 
constant given by 
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(14.74) 

Following the above conditions, Schuler, Nunziato and Walsh (1973), following Coleman and 
Gurtin (1965), affirmed that the amplitude of an acceleration wave is given by 

da r:l 
- pa + !:a 2 

dt y 

where f3 and y are constants given by 

R '(O) R '(O)U o p = - = constant, y = = constant 
2(EI)0 v 

(E )o 
I 

and 

The solution of(14.75) can be written as 

a(t) = Y 

( __y_ -1) exp(pt) + 1 
a(O) 

For a given material, f3 and y are constants. 

(14.75) 

(14.76) 

(14. 77) 

(14. 78) 

Assuming that the hypothesis of the above theorem holds and suppose that 

(14.79) 

One concludes, with reference to (14.78), following Coleman and Gurtin (1965), that: 

I. If either 

(i) I a (0) I is less than I y I, or 
v 

(ii) sgn a (0) = sgn (E )0 
I 

then a ( t) - 0 monotonously as t - co 

II. If a (0) = y, then a (t) =a (0) 
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m. Ifboth 

(i) I a (0) I is greater than I y 1. and 
v 

(ii) sgn a (0) = - sgn (E )0 
I 

then I a (t) I - 0 monotonously and in a finite timet~ given by 

t = _ _!_In( 1-_L) 
~ ~ a(O) 

(14.80a) 

It is apparent, from the above discussion, that I y I plays the role of the "critical amplitude" 
of the input acceleration. The latter may be denoted by a, which is expressed with reference 
to Eqn. (14.76) as 

= constant 
(14.80b) 

Thus (14.80) implies that, assuming (14.79): 

(i) if the amplitude of the input acceleration is sufficiently small(< critical amplitude) or 
if the amplitude has the same sign as the instantaneous second-order modulus, then 
an acceleration wave obeying (11.76) is gradually damped out. In this, the internal 
dissipation of the material is expected to be the governing factor in the mode of wave 
motion. 

(ii) if, however, the amplitude of the input acceleration is greater than the critical 
amplitude and has its sign opposite to that of the instantaneous second-order 
modulus, then the wave would achieve an infinite amplitude in a finite time, i.e., a 
shock wave may be produced. In this, the nonlinearity of the instantaneous stress
strain curve would be the controlling factor (see Schuler, Nunziato and Walsh, 1973). 

As noted by Coleman and Gurtin (1965), the presence of internal damping, manifested 
by a strictly negative value of R'(O), does not always imply that a singular surface moving 
into a homogeneous region must be damped out. 

In the linear theory of simple materials with fading memory, the stress-relaxation 
function R( t ), with 
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R'(1:) = d~~1:), 

is a material function independent of the strain history E (t - 1: ). In the physical application 
of this theory, it is generally expected that (Gurtin and Herrera, 1964) 

R(O)>O, R 1(0) !> 0 

Coleman, Gurtin and Herrera (1965) ruled out, however, the possibility when R(O)=O 
or R'(O) > 0 in the applicability of relation (11.76) above. Meantime, Coleman and Gurtin 
(1965), considered the applicability of(l4.76) in the following two cases: 

(i) R' (0) = 0 : 

In this case, it is advanced that the time-dependency of the amplitude a(t) of the 
acceleration wave is expressed as 

a(t) = a(O) 
1 +~ a(O)t' 

v 
E 

~ = 2UR~O) 
(14.81) 

where ~ is the instantaneous second-order modulus. Two situations may be considered 
I 

here: 

(i.1) 

(i.2) 

~ * 0, then (11. 81) implies, since Po > 0, that if a (0) has the same sign as ~ , 
::::L___ I 

then, I a (t) I ~ 0 monotonously in a finite time. 

v 
E * 0 , then (I 1. 78) would reduce to 
::::L___ 

a(t) = a(O)exp( R '(O)t) 
2R(O) 

(14.82) 

which may be generally valid for a large class of linear viscoelastic materials. A special class 
of materials with R'(O)=O is the class of perfectly elastic materials for which (14.80) is 
known to be applicable (Thomas, 1957, Green, 1964 and Coleman and Gurtin, 1965). 
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(ii) R' (0) < 0 

In this case, it follows from (14.76) that the amplitude of the acceleration wave a(t) 
- 0 as t- oo regardless of the sign of a(O). 

14.9. Shock Waves 

The subject of shock wave propagation in nonlinear materials with fading time
memory has been considered, by Duvall and Alverson (1963), Coleman and Gurtin (1965), 
Coleman, Gurtin and Herrera (1965), Chen and Gurtin (1970, 1972a) and Huilgol (1973), 
amongst others. 

Coleman, Gurtin and Herrera (1965) asserted that the following two conditions must 
be satisfied for the wave X(t), -oo < t < oo, to be called a shock wave in a material with 
memory. 

S-1: the coordinate function x (X, t) to be continuous in both X and t jointly while the 

deformation gradient F (X, t) = ~ x (X, t)and the time-derivative of the coordinate 
. ax(X t) . a X . . . . . . 
x (X, t) = ' have Jump dtscontmwtJ.es across the wave matenal trajectory at 

Q (t) but are continuous in X and t jointly everywhere else. 

S-2: the past history of the material is not too wild. For this purpose, it is assumed that the 
past history of the deformation gradient Fr1 (X,· )to be a smooth function of X and 
t with respect to the norm I I · I I r· In this, F rt (X,·) is the restriction on the history 
of the deformation gradient F(t- -r) to its domain of definition (0, oo ). 

Thus, following condition S-1 ab~ve, the compatibility condition (14.53) together 

with f(X, t) = u (X, t) affirm that at X= X, 

[v] = - U[€] (14.83) 

Where U is the intrinsic velocity of the shock wave. In view of ( 14. 83 ), either the jump in 
the particle velocity [v] or the jump in the strain [€] may be taken as a measure of the 
amplitude of the shock. Meantime, the equations (14.67) and (14.68) concerning, 
respectively, the balance of momentum and the balance of energy are also valid for the case 
of shock waves. 

Coleman, Gurtin and Herrera ( 1965) showed that the intrinsic velocity U of a shock 
wave satisfies the relation 
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(14.84) 

where ~[F) is the instantaneous secant modulus (14.60a) cor-responding to the history just 
before the arrival of the shock and a jump of amount [F] where F is the deformation 
gradient. Considering now the case of a compressive wave propagating into a region at rest 
and unstrained for all past times (Chen and Gurtin, 1970 and Schuler, Nunziato and Walsh, 
1973), i.e., for X> X(t), E (t- -r) = 0, 0::; -r <"" and 

Thus, the corresponding stress jump is expressed in view ofthe definition of the instantaneous 
stress o1 as [ o ] = o1 ( e-) . 

This implies, in view of(14.83) and (14.84) that the intrinsic velocity can be expressed by 

(14.85) 

which, in view of the second inequality of the convexity conditions (14.64), implies that 

(14.86) 

The inequality (14.86) above affirms (Schuler,Nunziato and Walsh, 1973) that the shock 
velocity is subsonic with respect to the material behind the wave front. From (14.85), it can 
be seen that the shock velocity depends on the strain amplitude E ·. Furthermore, one can 
write with reference to (14.85) that 

where 

dU 

dt 
(14.87) 
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(14.88) 

given earlier by (14.86). 

In view of (14.84), one concludes that the time rate of change of the shock velocity U is 
proportional to that of the amplitude of the strain behind the front e·. Following this and 
using the assumed characteristics of the deformation gradient F, Chen and Gurtin (1970) 
derived the following "shock amplitude equation" 

where 

fl 

dE- (1 -!!) {" } - = U-- 1.-(a er 
dt fl X 

1 + 3!! 

fl 

I. = 
R 1(e-;O)e

" U E1 (e-)(1 -!!) 

(14.89) 

(14.90) 

In (11.90), R'(e·; 0) is the initial slope of the stress-relaxation function corresponding to the 
jump strain input (14.58). It is evident, in view of(14.64), (14.65) and (14.90), that I.~ 0. 

Thus, with reference to the shock amplitude expression (14.89), one may conclude that the 
growth or decay behaviour of the shock wave front would depend on the strain gradient 
immediately behind the front (Schuler, Nunziato and Walsh, 1973). That is 

(i) if 

(ii) if (14.91) 

(iii) if 

In view of the above, Schuler et al (1973) referred to A as the "critical strain 
gradient". These authors expressed, the shock amplitude equation (14.90) in terms of 
particle velocity as 
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d;t- = _<1_-_11/\_> {<vr - u21~1} 
(1 + 311) 
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(14.92) 

In this equation, ( v ) -is the particle acceleration immediately behind the shock front and 
U 2 I A I is "the critical acceleration". It is evident from (14.92) that 

(i) the wave front grows if ( v r > u 2 I A I 
(ii) is steady if <vr = U 2 IJ.. I 
(iii) decays if (vr < U2 I A I (14.93) 

Further, it can be shown (Chen and Gurtin, 1970) that equation (14.92) reduces for the case 
of weak shock waves to the following simple expression 

dv- _ n _ 
-- -pv 

dt (14.94) 

where 13 is a constant given by 

R 1(0 · 0) p = - ' 
2 (EI)o (14.95a) 

in which, 

(E \ = do1(E) 
I~ dE (14.95b) 

The solution ofthe differential equation (14.94) is 

v -(t) = v -co) exp(- pt) (14.96) 

which asserts that the amplitude of a weak shock wave decays exponentially to zero as t ~ 
""· Such response is identical to that predicted by the linear theory of viscoelasticity (see, e.g, 
Lee and Kanter, 1953; Chu, 1962; Coleman and Gurtin, 1965 and Valanis, 1965). 
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14.10. Thermodynamic Influences 

14.10.1. ACCELERATIONWAVES 

It is noted by Schuler et aL (1973) that thermal effects have no influence on the 
propagation of acceleration waves in nonconducting materials with memory. Accordingly, 
on the assumption that a particular material to be a thermal nonconductor (which could be 
reasonable for a large class of polymeric solids), the study of the propagation of acceleration 
waves in such material would provide no information about the thermodynamic influence on 
its mechanical response. Thus, for a thermal nonconducting material, if the relaxation 
function and second-order modulus are taken at a fixed entropy, then the velocity of every 
acceleration wave would satisfy (14. 72). Furthermore, the amplitude of an acceleration wave 
entering a region at rest, unstrained and at uniform temperature would satisfy (14.78) with 
the material constants appearing in this equation being given by (14.76) and (14.77). 

In case of conducting materials, however, thermodynamic influences on the 
propagation of acceleration waves in viscoelastic materials are pronounced. In this, the 
reader is referred, for instance, to Coleman and Gurtin (1966). 

14.10.2. SHOCK WAVES 

Thermodynamic effects on the propagation of shock waves in nonconducting materials 
have been considered by Coleman and Gurtin (1966) and Chen and Gurtin (1972b). 
Meantime, studies on shock wave propagation in materials with memory which conduct heat 
have been carried out, for instance, by Achenbach, Vogel and Herrmann (1966) and by 
Dunwoody (1972). 

14.10.3. ANILLUSTRATIVEEXAMPLE 

Determination of the Stress Relaxation Function from Shock Wave Data 
Nunziato and Sutherland (1973) considered plate impact experiments to study the one
dimensional dynamic response ofPMMA. They considered the characteristic time scale for 
such experiments to be 1 o-2 - I 11sec. Denoting, over this time scale, the relaxation function 

by R(t) where R(O) is equivalent to the value of the relaxation function at 10-2 11sec and 

R ( oo) is corresponding to the relaxation function at 1 11sec. Nunziato and Sutherland ( 1973) 

obtained the stress-relaxation function R(t) shown in Fig. 14.6. From Fig. 14.6, one has: 

A 

R(O) = 90.1 kbars, 

A (14.97) 
R(oo) = 88.0 kbars 
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Figure 14. 6. Longitudinal stress relaxation function for PMMA. From: Nunziato, J. W. and 
Sutherland, H.J. (1973) Acoustical Determination of Stress Relaxation Functions in 
Polymers, J. Appl. Phys., 44(1), 184-87 (American Institute of Physics). Reprinted with 
permission 

Meantime, the characteristic relaxation time A is evaluated by considering the relation 
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(14.98a) 
e 

in which e is the Naperian base. From (14.97) and (14.98a), one concludes from Figure 14.6 
that the characteristic relaxation time is 

A = 0.22 JlSec (14.98b) 

Schuler (1970) considered the propagation of steady one-dimensional shock waves 



www.manaraa.com

252 

in PMMA. The relaxation behaviour of PMMA was characterized by a nonlinear constitutive 
relation of the form 

a(x,t) = aE(e) + JR(e;-c)[ 1 +e(t--c) - 1)d-c 
1 +e(t) 

0 

(14.99) 

where e = au is the longitudinal strain, aE(e) is the equilibrium response function and R(e; ax 
-c) is the generalized stress relaxation function. The latter is assumed to have the form 

R(e;-c) = R(e;O) exp( --c/'}..) (14.100) 

Evaluating (14.99} for the strain jump 

e(t--c) = e, 't = 0 
=0 -c>O 

then, it follows from (14.100) that 

(14.101) 

From an analysis of steady waves (see, e.g., Greenberg, 1968, Schuler 1970 and Schuler et 
al., 1973), one has 

(14.102) 

where U1 (e) and {k (e) are least square polynomial functions of the steady shock velocity 
as a function of strain e at the shock front and at the tail of the wave (Nunziato and 
Sutherland, 1973). For small strains, the nonlinear constitutive relation (14.99) would reduce 
to the corresponding constitutive relation in the linear case with (see Nunziato and Walsh, 
1973) 

11 do (0) ~ 
R(-c) = - 1- + 2fR(O;-c)d-c 

de 
0 

(14.103) 
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Combining, now, (14.100) and (14.103) it follows that 

do (0) 
_I_= U2(0) 

dE Po I 
(14.104) 

consequently, 

(\ 

R(t) = (R0 - RJ exp( --r/'A) + R~ (14.105) 

where 

Itisnotedthat UI(O) and UE(O) arethezerostraininterceptsofthe UI(E) and UE(E) 
curves. Using data reported by Schuler (1972), see Nunziato and Sutherland (1973), and 
Barker and Hollenbach (1970), Nunziato and Sutherland (1973) concluded that 

Ra = 90.2 kbars, 

(14.106a) 
R~ = 88.2 kbars 

Schuler (1970), by fitting the observed steady wave profiles, found that 

A = 0.25 11sec (14.106b) 

which is comparable to the value given earlier by (14.98b). With the above data, the 
relaxation function (14.105) is given in Fig. 14.7 (after Nunziato and Sutherland, 1973). As 
demonstrated, there is reasonable agreement with the relaxation function deduced from 
acoustic dispersion data. 

14.11. Study Problems 

1. Define briefly the following terms: 
(a) Internal friction. 
(b) Static hysteresis. 
(c) Viscous loss. 

2. Derive the wave equation in a linear viscoelastic material as based on Boltzmann's 
superposition principle. 

3. Derive the wave equation in a linear viscoelastic material as based on the 
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correspondence principle. 
4. What is meant by the expression: "a material with a time fading memory". 
5. Define an "acceleration wave" as applied to wave propagation in a viscoelastic 

material. 
6. Define a "shock wave" as applied to wave propagation in a viscoelastic material. 
7. Comment on the kinematic conditions that would be required to be satisfied for a 

shock wave to form in both linear and nonlinear viscoelastic material. 
8. Following Problem 7 above, what are the required kinematic conditions that would 

be required for a shock wave to form in a ductile material (Consult Chapter 12). 
9. What are the kinematic conditions for an acceleration wave to form in a viscoelastic 
10. Following Problem 9 above, what are the required kinematic conditions that would 

be required for an acceleration wave to form in a ductile material (Consult Chapter 
12). 

93~----~----~.----~,r-----.-,--~ 

T=22.2'C 

90~ 'C" .... as .... _ 
~ ~--..;..;;:-:..::-:..::-:..::-:.:-:.:-:.::::.:-:.:-:..::..:-:..::.:-: 

-

<(!) 
87 1- -

84~----~~-------'~----~1 ------1~--~ 
0.0 0.2 0.4 0.6 0.8 1.0 

Time (JJ.S) 

Figure 14. 7. Stress-relaxation function for PMMA appropriate for shock wave experiments: - - - , 
Schuler (1970, unpublished data),_, this work. From: Nunziato, J.W. and Sutherland, H.J. 
(1973) Acoustical Determination of Stress Relaxation Functions in Polymers, J. Appl. Phys., 44(1), 
184-187 (American Institute of Physics). Reprinted with permission. 

14.12. Transition to the Viscoelastic Boundary Value Problem 

In view of the time-dependency of the response behaviour in viscoelasticity which is further 
complicated by the form of the constitutive relations and, hence, the associated boundary 
conditions, serious attempts to solve viscoelastic boundary value problems have lagged 
considerably behind those in classical elasticity. It is only in the last four decades that 
viscoelastic boundary value problems have been actively considered. At the beginning, 
researchers have given attention to the solution of the simpler viscoelastic problems that have 
analogues in classical elasticity whereby the viscoelastic solution may be expressed directly 
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in tenns of the analogous elastic problem. Research efforts have been advanced since then to 
tackle more difficult viscoelastic boundary value problems with or without correspondence 
to the theory of elasticity. 

14.12.1. CLASSIFICATION OF VISCOELASTIC BOUNDARY VALUE PROBLEMS 

Since the response behaviour of a viscoelastic material is time-dependent, it thus follows that 
no real static viscoelastic problem exists. However, in a large number of cases, it may be 
admissible 
(see Hunter, 1967) to neglect the acceleration terms in the equations of motion. In such case, 
the viscoelastic boundary value problem is referred to as "quasi-static" or "quasi-stationary". 
As Hunter (1967), for instance, pointed out, the only "true static" problems in viscoelasticity 
are those corresponding to the equilibrium limit of complete stress relaxation. A'' quasi
static" viscoelastic boundary value problem is often classified from the point of view of the 
time-dependency of its boundary regions. In this, the following two categories are often dealt 
with. 

(A) Quasi-static problems with fvced (time-independent) boundary conditions. 
For this category, the loading history is assumed to be known for all time over 
a fixed part of the boundary, while the displacement history is specified for the 
remaining part. This type of problem is generally solvable using a 
correspondence with an analogous elastic problem, i.e., by employing the so 
called "co"espondence principle" (to be introduced in this Section). This is 
essentially due to the possibility of obtaining Laplace (or Fourier) transforms 
of the boundary conditions as illustrated later in this Section. 

(B) Quasi-static problems with mixed boundary regions which are time
dependent. 
This category of viscoelastic boundary value problems is not generally 
susceptible to solution by the correspondence principle as it may be impossible 
to obtain appropriate transforms of the boundary conditions. Examples of 
such type of problems may include contact problems where the load on the 
indenter is varying or the indenter is moving into the viscoelastic material 
specimen with an indentation of varying geometry. 

Much less research work has been carried out on inertial and dynamic viscoelastic 
boundary value problems. In this domain, a large portion of the research has concentrated 
primarily on viscoelastic wave propagation problems that involve only one space variable. 
Chao and Achenbach {1964) and Gurtin and Herrera (1964), among others, considered the 
use of the correspondence principle for the solution of viscoelastic wave propagation 
problems of this type. In general, however, viscoelastic waves may propagate in three 
dimensions with different magnitudes of attenuation and dispersion (e.g., Lockett, 1962). In 
this case, an associated boundary value problem may not be solvable via a dynamic 
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correspondence principle (Hunter, 1967). 
Research efforts to solve thermoviscoelastic boundary value problems have been often 

distracted by the fact that mechanical properties of viscoelastic materials are sensitive to 
temperature variations. This is complicated further by the heat generated in the viscoelastic 
material during deformation. The formulation of the governing equations has been proven, 
thus, to be difficult. Morland and Lee (1960), for instance, have considered the case of a 
thermo-rheologically simple solid (e.g., Schwarzl and Staverman, 1952 and Hunter, 1961) in 
the absence of internally generated heat and thermodynamic coupling effects. Morland and 
Lee (1960) applied, then, the resulting equations to the quasi-static problem of an 
incompressible long cylinder subject to radial temperature gradient and internal pressure. 
Muki and Sternberg (1961) have dealt with the thermal stresses in viscoelastic materials with 
temperature dependent properties and considered transient stress problems in plane slabs and 
spheres subject to temperature variation. Rogers and Lee (1962) have considered the solution 
of the quasi-static thermoviscoelastic problem of a sphere with an internally ablating cavity. 
Sternberg and Gurtin (1963,1964) considered the uniqueness of the theory of 
thermorheologically simple ablating viscoelastic solids. 

A classification ofboundary value problems in viscoelasticity is presented in Fig. 14.8. 
For comprehensive studies of the subject matter, the reader is referred further to Read (1950), 
Lee et al. (1959), Sternberg (1964), Predeleanu (1965), Rogers (1965), Lee (1966) and 
Golden and Graham (1988); among others. 

Viscoelastic boundary value problem 

~----------~Jl~----------~ 
( ' Quasi-static boundary value problem 

(the acceleration terms are neglected 
in the equations of motion) 

Dynamic boundary value problem 

~--------~Jl----------~ 
( ' Isothermal Thermovlscoelastic 

(most of the P.roblems and analyses are Coupling effects Coupling effects 
concerned w1th linear Isotropic materials are neglected are Included 

under Isothermal conditions) 

~--------~)l----------~ 
( ' Fixed (time-independent) boundary Mixed-type (time-dependent) boundary 

conditions conditions 
Correspondence principle may be utilized Problems are not susceptible to solution 

to solve quasi-static problems by the correspondence principle 

Figure 14. 8. Classification of viscoelastic boundary value problems. 
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14.12.2. FORMULATION OF THE VISCOELASTIC BOUNDARY VALUE PROBLEM 

In compliance with the principles of continuum mechanics, the motion of a viscoelastic 
(continuum) body is generally governed by the laws of conservation of mass and momentum, 
the stress-strain constitutive relations, the boundary conditions and the initial conditions. As 
demonstrated in the remainder of this section, the formulation of this set of governing 
conditions is determined by the type of the boundary value problem considered. 

Isothermal, Linear Viscoelastic Boundary Value Problem 
In this class of boundary value problem, all the geometrical assumptions of infinitesimal 
elasticity theory are implied. These would usually include the assumptions of small 
deformations and small strains, the boundary conditions applied to undisturbed surfaces and 
the neglect of any convective terms in the acceleration. In this class of viscoelastic boundary 
value problem, only the viscoelastic stress-strain relations would differ from the linear elastic 
constitutive equations. All other governing conditions would follow directly from linear 
elasticity with proper inclusion of the time-dependency of the pertaining variables. The 
governing set of conditions for an isothermal, linear viscoelastic boundary value problem are 
as follows: 

(i) Initial conditions 
We assume that the body is initially undisturbed. In other words, it is initially stress free and 
in mechanical equilibrium. Thus, the initial conditions are, 

u.(t) = 0 e(t) = 0 o .. (t) = O· -oo<t<O 
l ' Jj ' 1) ' (14.107) 

where ui designate the components of the displacement vector in a rectangular Cartesian 
coordinate system. 

(ii) Boundary conditions 
The boundary B of the body is considered to be composed of two parts B0 and B0 • That 
is 

where B0 denotes the part of the boundary of the body over which the components of the 
stress o are prescribed; and Bu indicates the remaining part of the boundary over which the 
components of the displacement u are specified. The boundary conditions may be assigned 
in the form of magnitudes of: 

- traction vector components Ti over B0 such that 
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(14.108a) 

where ni are the components of the outward unit normal to B0 • 

- displacement vector components Ui over Bu as 

(14.108b) 

The boundary conditions (14.108) are assumed to be fixed, that is, both the traction 
vector components Ti and the displacement vector components Ui are considered to be 
prescribed for all t. 

(iii) Balance of linear momentum 
One of the following two situations may be considered: 

-A quasi-static problem. In this case, the equilibrium equation is 

(14.109) 

- A dynamic problem. In this case, the equation of motion is 

(14.110) 

where, in (14.1 09) and (14.11 0), Xi are the body force components per unit volume. 

(iv) Linear strain-displacement relations 

1 
e (t) = -(u (t) + u. (t)) y 2 IJ j,l (14.111) 

in which a comma indicates partial differentiation with respect to the coordinates X; of the 
material particle. 

(v) Stress-strain relations. 
General linear constitutive equations for a viscoelastic material with an arbitrary degree of 
anisotropy may be expressed in the form of Boltzmann superposition integral (e.g., Haddad, 
1995) 
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Creep case: 

(14.112) 

where Cvkft-r) are the components of the creep function. 

Relaxation case: 

(14.113) 

where RiJdt-r) are the components of the relaxation function. 

The constitutive relation for an isotropic material can be reduced to two pairs of 
operators, one for the stress-strain deviatoric constitutive relation which covers shear 
response and one for average hydrostatic tension and dilatation. In this case, a differential 
operator law in the following form may be used (Lee, 1960) 

P 1(D)o1y(t) = Q1(D)E1i/(t) 

PiD)okk(t) = QiD)Ekk(t) 

where o'ij, E'ij are the stress and strain deviators defined, respectively, by 

1 
0 = ou - -& 0 , 0 = 0 ij 3 I] kk ii 

1 
E = Eij - -& Ekk , E = 0 ij 3 I} ii 

(14.114) 

(14.115) 

In Equation (14.114), P~> P2, Q, and Q2 are polynomials of the time-derivative operator 
D = aJat. 

Alternatively, the stress-strain relations (14.114) may be used in either of the following 
constitutive forms: 

Creep case: 

(14.116) 
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where C1(t) and Cit) are the creep functions in pure shear and pure dilatation, 
respectively (e.g., Haddad, 1995). 

Relaxation case: 

(14.117) 

where R1(t) and Rit) are the relaxation functions in pure shear and pure dilatation, 
respectively. 

For an isotropic viscoelastic material, an approximate form of the constitutive relation 
in the relaxation case may be expressed (Hunter, 1967) as, 

Jt aEkl•) 1~ aE, (r) 
o.(t) = & A.(t-"t")--d"t" + 2 Jl(l-"t)-'-~ -d"t" 

I} I} a.. a .. 
0 0 

(14.118) 
where A.(t) and J.L(t) are appropriate relaxation functions. 

In terms of deviatoric and dilatational components, the isotropic constitutive equation 
in the relaxation case can be further written as, 

Jt ae '.("t) 
o'.(t) = 2 Jl(l-t)-IJ-d:c 

I} a .. 
0 

(14.119) 

where o'ii(t) and E'ii (t) are, respectively, the deviatoric stress and the deviatoric strain 
components and p(t) and k(t) are the relaxation functions in pure shear and pure dilatation, 
respectively. 

In the isothermal linear boundary value problem, the three balance of linear 
momentum equations (14.109), or (14.110), the six strain-displacement relations (14.111) and 
the six stress-strain constitutive equations, e.g. (14.119), constitute a set of fifteen field 
equations for the fifteen dependent variables U;, Eii and O;i under the prescribed boundary 
conditions T;(x,t) and U;(x,t), (14.108), and the assumed initial conditions (14.107). 
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14.12.3. UNIQUENESS OF SOLUTION 

An important question concerning the solution of a boundary value problem in continuum 
mechanics is whether the formulated problem has a solution and whether the solution is 
unique or not (Fung, 1965). On physical grounds, this question may be dealt with by 
reference to the thermodynamics of the problem involved. On mathematical grounds, 
however, this question must be answered by the theory of partial differential equations. A 
satisfactory solution to the problem in hand must comply with both the laws of physics and 
principles of mathematics. In solving boundary value problems of static equilibrium within 
classical elasticity, for example, one may proceed in the following sequence: (i) one solves 
the equations of equilibrium for the stresses oii . (ii) the constitutive response equations are 
then solved for the strains Eii by using the stress components oii obtained from (i). Here, 
an infinite set of solutions may be found. However, the unique solution would be singled out 
by employing, for instance, the conditions of compatibility (Chapter 3). 

The existence and uniqueness of solution theorems in classical elasticity have been 
extended by Gurtin and Sternberg (1962) to the class oflinear boundary value problems in 
viscoelasticity. This was carried out in light of an earlier work by Volterra (1909). 

For the most direct case of isothermal, isotropic, linear viscoelastic boundary value 
problem under a quasi-static condition, Christensen (1971), following Gurtin and Sternberg 
(1962), presented a uniqueness condition of solution. This condition may be stated, in view 
of the set of governing equations presented earlier, as follows: 

The isotropic, quasi-static, viscoelastic boundary value problem governed by 
the initial conditions (14.107), the boundary conditions (14.108), the 
equations of equilibrium (14.109), the strain-displacement relations (14.111) 
and the stress-strain equations (14.119) possesses a unique solution provided 
that the initial values of the relaxation Junctions appearing in the constitutive 
equations (I 4.119) satisfy the conditions 

!1(0)>0 and k(O)>O (14.120) 

For a proof of the uniqueness theorem stated above, the reader is referred to 
Christensen (1971). Other versions of uniqueness theorems for the above class of boundary 
value problems are given by Onat and Breuer (1963), Edelstein and Gurtin (1964), Odeh and 
Tadjbakhsh (1965), Barberan and Herrera (1966) and Lubliner and Sackman (1967), amongst 
others. 

14.12.4.CORRESPONDENCE PRINCIPLE. THE ELASTIC-VISCOELASTIC ANALOGY 

For a large number of technical viscoelastic problems, it is possible to relate mathematically 
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the solution of a linear, viscoelastic boundary value problem to an analogous problem of an 
elastic body of the same geometry and under the same initial and boundary conditions. This 
is carried out by transforming the governing equations of the viscoelastic problem to be 
mathematically equivalent to those governing a corresponding elastic problem. In this, both 
Laplace and Fourier transforms are often used. Accordingly, one would be able to employ 
the tools of the theory of elasticity to solve different boundary value problems in linear 
viscoelasticity. 

The above analogy is referred to as the "co"espondence principle". It implies that 
elastic analysis procedures may be utilized to derive transformed viscoelastic solutions (see, 
for instance, Lee, 1955, Morland and Lee, 1960 and Schapery, 1967). Lee (1955) 
demonstrated the correspondence principle for isotropic media at constant temperature. 
Meantime, Morland and Lee ( 1960) considered the application of the correspondence 
principle for isotropic materials with temperature variations. Biot (1958) argued that the 
correspondence principle may be also applied to anisotropic materials due to the symmetry 
of the relaxation modulus tensor, i.e. ~ikl(t) = ~Qij(t). 

Isothermal, Linear Viscoelastic Boundary Value Problem 
(i) Initial conditions. The body is assumed to be initially undisturbed. Thus, the initial 

conditions (14.107) will hold. 

(ii) Boundary conditions. The Laplace-transformed forms of the boundary conditions 
(14.1 08a) and (14.108b) are, respectively, 

(14.121a) 

(14.121b) 

where s is the Laplace transform variable and the "overbar" designates the Laplace
transform of the variable, i.e., 

and 

T;(x,s) = jT;(x,t)e -stdt 
0 

Ulx,s) = J U;(x,t)e -stdt 
0 

(see Appendix C) 

(14.122a) 

(14.122b) 
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(iii) Balance of linear momentum. The quasi-static case is dealt with here. Recalling 
(14.109), multiplying it by e·•t and integrating over -oo<t<oo, then, the Laplace 
transform of the equilibrium equation is 

(14.123) 

(iv) Linear strain displacement relations. The Laplace-transformed strain-displacement 
relation (14.111) is, 

1 - -
-(u + u.) 2 IJ ),1 (14.124) 

(v) Stress-strain relations. The constitutive equations (14.112) and (14.113) can be 
transformed by the rule of convolution integrals (see Schapery, 1967) to yield, respectively, 
the algebraic relations: 

(14.125) 

(14.126) 

where CiJkt and RiJkl are the s-multiplied (Laplace) transforms of the creep and relaxation 
functions, respectively, i.e., 

(14.127a) 

(14.127b) 

(14.128) 

~ ~ 

The quantities CiJkl and Rijkl are interrelated operational functions, and both are completely 
symmetric. Thus, in view of the thermodynamic theory, the transformed constitutive 
equations in terms of these operational functions are identical to those of an elastic body with 
compliance F iJkl and modulus RiJkl and of the same degree of geometric symmetry (see 
Schapery, 1967). 



www.manaraa.com

264 

For the case of an isotropic material, the constitutive equation (14.118) may be used. 
The Laplace transform of this equation is (see Hunter, 1967). 

(14.129) 

where au and E'u are the Laplace transforms of au and E'u, respectively. In this equation, 
the transform moduli .A(s) and f.l(s) are defined by, 

2 A.(s) = k(s) - -Jl(s) 
3 

(14.130) 

where k(s) is the Laplace transform of the relaxation function in pure dilatation, i.e., with 
reference to Eqn. 14.117, 

k(s) = s J R 1 (t)e -st dt 

0 

and Jl(s) is the Laplace transform of the relaxation function in pure shear, i.e., 

Jl(S) = s J Rit)e -stdt 
0 

(14.131a) 

(14.131b) 

In the general case of nonhomogeneous material, the field quantities aij, E., and E'ij 

of(14.129) are usually functions of both the transform parameter s and the position vector 
x. However, the transform moduli .A(s) and fi{s) are functions of the transform variable 
s only (Hunter, 1967). 

The corresponding format to (14.129) in linear elasticity is the constitutive equation, 

au = hi)u + 211e'v (14.132) 

where A and ll are the Lame constants. Such analogy reflects the basis of the 
correspondence principle. 

The set of Laplace-transformed relations, (14.121 ), (14.123), (14.124), together with 
the transformed constitutive equations (14.125) and (14.126), or alternatively (14.129), 
constitutes an "associated' elastic problem corresponding to the original (quasi-static) 
viscoelastic boundary value problem for the same geometry and subject to surface tractions 
Ti = Ti(x,s), displacements ui = ui(x,s) and body forces Xi= Xi(x,s). The task then would 
be to solve this analogous elastic problem (Laplace transformed of the original viscoelastic 
problem) to determine the transformed components of the stress aij and/or the transformed 
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components of the displacement u; throughout the body. 

A Laplace inversion procedure would follow afterwards to determine the components 
of the stress and displacement in the original viscoelastic boundary value problem. The reader 
is referred, in this context, to Sips (1951), Brull (1953), Lee (1955,1960), among others. 

Although the presentation above uses Laplace transform procedure, a similar treatment could 
be accomplished using Fourier transform (e.g., Read, 1950). 

Remarks on the Use of the Correspondence Principle to Solve Linear Viscoelastic 
Boundary Value Problems 

In the course of solving a linear viscoelastic boundary value problem using the 
correspondence principle, one might consider some simplifications in order to ease the 
difficulty which might arise in the inversion of the resulting Laplace transforms. For instance 
(see Hunter, 1967), 

- In a large number of boundary value problems it may be unnecessary to invert the 
resulting Laplace transform for all positions on the boundary (i.e., x on Bu or BJ if 
the stress and/or displacement are only required at one particular position. 

-In some situations, the integral value of the stress and/or displacement is required 
to be determined rather than individual values of these variables. In such case, it 
might be easier if one establishes the relevant integral property before the inversion 
process. 

- The inversion procedure can be simplified significantly if one assumes a constant 
Poisson's ratio model and particularly if the body forces X are neglected. In this 
case, if Bu is considered to be stress-free, then, for the same boundary conditions, 
the resulting displacement field at any given instant of time would be identical to the 
displacement field of the corresponding elastic problem. A similar example here is 
when Bu=O and Bo =B, i.e., the traction vector is specified everywhere on the total 
boundary, then, the resulting viscoelastic stress field would be identical with the stress 
field of the corresponding elastic problem. 
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EXAMPLE 14. 1: Torsional Quasi-Static Twisting of a Linear, Viscoelastic Cylinder. 

This example (Hunter, 1967) considers the determination of the time-dependent 
twisting moment and displacement of a solid cylinder of radius a and length f made of 
linear viscoelastic material. 

Let u., u8 and Uz represent the displacement components in cylindrical polar 
components. Let 8 denote the angle of twist at z=Q and M designate the twisting moment. 

From the theory of elasticity, the displacement field of an elastic solid cylinder under 
the action of a twisting moment and a stress free cylindrical surface condition is expressed 
(see, e.g., Love, 1944), as, 

(14.133) 

For an analogous quasi-static viscoelastic problem with prescribed displacements as 

r!l, 

ue = { 
0, 

z=l 

z=O 

and a stress free cylindrical surface, the displacement field is given by (14.133) with e now 
is time-dependent variable. In this case, the only non-vanishing strain component is, 

1 r e6 = -8(t)
z 2 I (14.134) 

The non-vanishing (transformed) stress corresponding to the above strain becomes 

- - - r 
1:6 = Jl(s) 8(s)-

z I 

where !i(s) is the transformed shear modulus. 

(14.135) 

Thus, the total (transformed) couple required to maintain the (transformed) angle of twist 
B(s) can be expressed as, 



www.manaraa.com

which may be inverted in either of the relaxation form, 

4 t 

M(t) = n:a J8(t)G(t-t)dt 1 

21 
0 

or, in the creep form 

O(t) = ( n:~4r 1 
fM(t 1)G- 1(t-t)dt 1 

0 

where G(t-t') is the relaxation function of the material in shear. 

267 

(14.136) 

(14.137a) 

(14.137b) 

Equations ( 14.13 7) provide a quasi-static linear viscoelastic solution of the presented 
problem for prescribed O(t) or M(t). 

EXAMPLE 14.2: Impact of a Flat Circular Punch on a Linear, Viscoelastic Half
Space 

Elastic Solution 
According to the theory of elasticity (see Hunter, 1967) the solution ofthe problem ofthe 
normal indentation of an elastic half-space by a flat ended rigid-circular punch of radius a 
gives a pressure distribution described as (Boussinesq, 1885). 

p(r) = 41.wd( 2 2)-112 --a -r 
1-v ' 

r<a 
(14.138) 

0 r>a 

where d is the depth of the penetration and v is Poisson's ratio of the elastic half-space. 
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Further, the total load is given by, 

a 

J 8na 
F = 2n prdr = --~td 

1-r 
0 

Viscoelastic Solution 
For the linear viscoelastic case, Eqn. (14.139) becomes, 

- 8na- -
F = --u(s) d : v = constant 

1-v 

(14.139) 

(14.140) 

where v is, as presented above, the Poisson's ratio of the viscoelastic half-space. 
Accordingly, given F(t) or d(t), Eqn. (14.140), when inverted, gives d or F respectively. 

Extension of the Problem above to Include Impact 
For the impact problem, the load F is expressed by Newton's second law of motion 

F=-md 

where m is the mass of the indenter and d is its acceleration. On taking Laplace transform 
of the above expression, then, the (transformed) force is written as 

F = -m(s 2d- ) 

where v is the initial impact velocity at the initial conditions: d=O at t=O. 

Solving (14.140) and (14.141) for d gives 

d = [s2 + 8na ~t(s))-' 
m(1- v) 

(14.141) 

(14.142) 

With some physical approximation (Hunter, 1967), the inversion of (14.142) gives 
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d= :( 1 + t:~) exp[ -~(wtan~)t]sin(wt-tan~) 
v tan~ -2wt 

(14.143a) 

+ exp--
2w 1t 

where w is the solution of 

w(l -v) 
~=---:...t...w2 = Jl (w) 

81ta 1 (14.143b) 

In (14.143b), J.11(w) is the real part of the complex shear modulus and, in (14.143a), tan~= 
Jlz{W)/J.11(w). For the values of w where the viscoelasticity is significant, J.12(w) << J.1 1(w) 
and tan ~ << 1. 

Further, the impact terminates at a time given by d=O with solution 

when the indenter velocity is - v(1 - y tan~) where 

This results in a "coefficient of restitution" ( given by 

( = 1 - 1.2 tan~ (14.144) 

Thus, the energy absorbed by the solid is 

E = 1.2 mv 2 tan~ (14.145) 

(see Hunter, 1967). 
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14.12.5. QUASI-STATIC VISCOELASTIC MIXED BOUNDARY VALUE PROBLEMS 

Earlier in Subsection 14 .12. 3, the set of conditions governing an isothermal, linear viscoelastic 
boundary value problem has been introduced. In Subsection 14.12.4, the correspondence 
principle was presented to solve a boundary value problem of this type, subject to the 
condition that B0 and Bu are independent of time where those are the parts of the boundary 
upon which stress vector components and displacement components, respectively, are 
specified. This is necessitated by the requirement that the assumed boundary conditions at 
a point to be time invariant so that the integral transform methods would be applicable. 

Consequently, an elastic-viscoelastic correspondence principle does not exist 
when the parts of the boundary Bu and B. are junctions of time, i.e., when 
the boundary conditions at the particular point in question may involve with 
the passage of time both stress and displacement vectors. 

A representative boundary value problem of the latter type is the time-dependent 
indentation of a viscoelastic half-space by a curved rigid indenter. In this case, as the indenter 
is loaded and the depression into the viscoelastic half-space is progressing, there are some 
points on the boundary of the indentation region that, at first, may have traction free boundary 
conditions, but later could have displacement followed by stress boundary conditions. In other 
words, a portion of the boundary is the boundary Bu part of the time and is the boundary 
Bo at other times, so that the half-space would conform to the geometry of the indenter in 
the contact region. Studies concerning this problem were presented, for instance, by Lee and 
Radok (1960), Hunter (1960), Graham (1965,1967), Calvit (1967) and Ting (1966,1968). 
Other examples of mixed boundary value problems are, for instance, those involving rolling 
of rigid bodies over a viscoelastic half-space (e.g.,Hunter, 1961 and Morland, 1962, 1967) 
and ablation problems in which phase change could cause the boundaries of a viscoelastic 
medium to change size and shape. An example of this problem is the case of a spinning 
rocket's filling burning internally (e.g., Cornelliussen eta/., 1961). A similar problem of an 
internally ablating sphere was considered by Rogers and Lee (1962). Other examples of 
boundary value problem where integral transform methods are invalid are nonisothermal 
problems in which the mechanical properties are assumed to be temperature-dependent. A 
number ofboundary value problems of the latter types have been solved, but it appears that 
no systematic methods of solution are available. 

EXAMPLE 14.3: Deformation of a Uniform Viscoelastic Beam by a Curved Rigid 
Indenter. (see Christensen, 1971) 

The schematics ofthe problem are shown in Figure 14.9. As indicated, 

P(t) is the force applied to the indenter, 
d(t) is the vertical displacement of the indenter, and 
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a (t) is is half-length of the contact region (It is considered a basic unknown of the 
problem). 

P(t) 

y \1---.. ~L"-----1•1 
Figure 14.9. Deformation of a uniform beam by a curved rigid indenter. 

The indenter is assumed to have a cubic profile expressed by 

y = d(t) - b lx 13 (14.146) 

where b is a given constant 

In this problem, classical beam theory with simply supported end conditions are 
assumed. Inertia effects are neglected. Contact is considered to begin at t=O. 

Based on the above assumptions, elasticity theory gives 

Eld4w = q(x) 
dx4 (14.147) 

where I is the moment of inertia of the cross-section of the beam, w is the transverse 
displacement and q(x) is the lateral load. 

Meantime, a viscoelastic beam theory gives 

1 a [a4w(x t) l IjR(t-t)- ' dt = q(x,t) at ax 4 
0 

(14.148) 
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in which R(t- r) is the uniaxial relaxation function. 

In the contact region, x<a(t), the deflection of the beam must conform to the geometry 
of the indenter, then, with reference to Eqn. (14.146), 

w(x,t) = d(t) - bx 3 ; x<a(t) and t ~ 0 (14.149) 

Outside the contact region, x>a(t), the lateral load vanishes and Eqn. (14.148) is 
satisfied by 

(14.150) 

where b1(t), bz(t), blt) and bit) are functions of time required to be determined. 

Implying the condition that the shear resultants on the ends of the beam balance the 
applied load P(t) gives, in view of(14.150), 

t db ('t:) 
12/ JR(t-"C)+dr: = P(t) (14.151) 

0 

The end conditions are: 

which can be specified by (see Figure 14.9) 

(14.152) 

and 

(14.153) 

The continuity conditions at the edge of the contact region x=a imply that, w, awJax 
and a2w/ax2 to be continuous. Accordingly, equations (14.149) and (14.150) give 
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b1 (t) + bit)a(t) + bit)a 2 

+ b it)a 3(t) = d(t) - ba 3(t) 
(14.154) 

(14.155) 

2bit) + 6b it)a(t) = - 6ba(t) (14.156) 

Relations (14.151) to (14.1 56) give six nonlinear equations: 

(i) If the load P(t) is considered to be known, then, the six equations would 
be solved for the six unknowns blt), bit), bit), blt), a(t) and d(t). 

(ii) Alternatively, if the displacement of the indenter d(t) is taken to be 
specified, then, the above-mentioned equations can be solved for the 
unknowns Clt). Cit). Clt), Clt). a(t) and P(t). These two cases are 
considered separately by Christensen (1971 ). 

EXAMPLE 14.4: A Spherical Indenter on a Viscoelastic Half-Space 

As a second example of a viscoelastic boundary value problem with mixed-typed 
boundary conditions, the problem of indentation of a viscoelastic half-space by a rigid 
spherical indenter is considered. Previous studies on this type of problem were carried out, 
for instance, by Lee and Radok (1960), Hunter (1960) and Graham (1965). The analysis 
presented below follows that ofHunter (1967) after Graham (1965). Reference is, also, made 
to Christensen (1971). 

The indenter is considered to be applied at the origin of a rectangular Cartesian 
coordinate system (x,y,z) and its motion is vertical in the z-direction. The shear stresses over 
the entire boundary of the half-space are assumed to be identically equal to zero. In the 
contact region, however, the normal component of the displacement of the boundary is 
considered to conform to the shape of the indenter. Let, 
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R 
ti(t) 
a(t) 
z=O 
r=x2+f 

The Problem 

is the radius of the indenter 
is the depth of penetration 
is the radius of the contact surface 
is the surface of the (viscoelastic) half-space 

It is to determine the stress distribution under the spherical indenter and the relation between 
the depth of penetration o(t) and the radius of the contact surface a(t) subject to the 
following boundary conditions: 

At z=O, 

't: =0 rz 

where H(t) is the Heaviside step function (Appendix B). 

Elastic Solution 

r,.:;a(t) 

r>a(t) 

(a) 

(b) 

(c) 

(14.157) 

The starting point of Graham's solution is taken as (see Hunter, 1967) the Boussinesq 
formula for the normal surface displacement of an elastic solid subjected to a normal point 
load P at x' y', i.e., 

(14.158) 

where 1.1 is the elastic shear modulus and v is Poisson's ratio. 

Viscoelastic Solution 
Generalizing (14.158) to the case of a viscoelastic half-space subjected to a time variable 
distributed load P(x,y,t) gives under the assumption of a constant Poisson's ratio(see Hunter, 
1967), 

I 

uz(x,y,O,t) = (l;rtv) G -1(/)*d J JP(x 1,y 1,t) [<x -x)l +(y-y)2f2 dx 14JI 1 

Qm 

(14.159) 
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where G-1(t) is the creep function in shear and where the following notation ofGurtin and 
Sternberg (1962) is used 

In (14.159) the double (surface) integral is taken over the maximum range Qm enclosing all 
points x',y' for which P(x',y',t') is non-zero for any timet' in the range -oo < t' < t. 

With reference to Eqn.(14.159), Hunter (1967) considered the following four 
situations: 

(i) For a given load P(x,y,t), Eqn. (14.159) presents the solution for the 
normal surface displacement and such problems may be considered within the 
class of the boundary value problems that can be solved by the 
Correspondence Principle (Subsection 14.12.4). 

(ii) For the indentation problem, "mixed-type boundary conditions" boundary 
value problem, Eqn. (14.159) may be considered as an integral equation for 
P subject to the condition that for r < a(t), the surface displacement uz is 
given by (14.157a), while for r > a(t), P vanishes. 

(iii) For monotonously increasing a(t), {)m is time-dependent and can be 
taken as {}(t) = 11: d(t). In this case, the orders of space and time integration 
in (14.159) can be changed to give 

I 

uz= (12~v) J J dx 1t{y 1[(x -x~2 +(y-y~2f2 G -1dP (14.160) 
Q(t) 

in which 

G -IdP = TJ(x,y,a) (14.161) 

where 11 is the unique solution of the corresponding elastic problem whose solution 
(Boussinesq, 1885) is given by 

(14.162a) 

and, 
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TJ = 0 for r>a (14.162b) 

so that (14.161) leads to 

P(x,y,t)= 4 J
1 G(t-t)~[(a 2(t)-r 2)~kt 1 

1t(1-v)R dt 1 
0 

(14.163) 

in which for a fixed r, the lower limit of the integral may be taken as t" where t" is the unique 
solution 

a(t 1) = r 

Meantime, the total load on the indenter is given by 

a( I) 

F(t) = 21t J r P(x,y,t)dr 
0 

which can be evaluated by interchanging the order of the space and time integrations (Hunter, 
1960, 1967) to give 

I 

F(t)= 8 JG(t-t)~a3(t)dt' 
3R{1-v) dt 1 

0 

(14.164) 

Further, it can be shown that the depth of penetration can be expressed by 

(14.165) 

which is the same for the corresponding elastic problem. 

(iv) The radius of the contact surface a(t) increases monotonously to a 
maximum value at t=t.n and then decreases to zero. In this case, the solution 
given above is valid forts tm·· For t > tm, however, the solution fails because 
it is no longer permissible to replace Qm in {14.159) by il(t). To obtain the 
solution {14.159) for t > tm, Hunter (1967) introduced the time function t1(t) 
defined by the relations: 
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(14.166) 

In other words, t1 is the time prior to t for which the radius of the contact circle is 
equal to the current value. 

Further studies concerning the viscoelastic contact problem have been dealt with, for 
instance, by Calvit (1967) and Ting (1968). Graham (1968) and Ting (1968) have outlined 
restricted classes of viscoelastic contact problems which may be solved directly using the 
elastic-viscoelastic correspondence principle. 

14.12.6. THE THERMOVISCOELASTIC BOUNDARY VALUE PROBLEM 

The set of conditions that governs a thermoviscoelastic boundary value problem may be 
stated as follows: 

(i) Initial Conditions 
Assuming the body is initially undisturbed at a base temperature eo, then, the initial 
conditions are 

u.(t)=O E(t)=O o .. (t)=O e(t)=O -"" < t < 0 
I ' y ' IJ ' ' 

(14.167) 

where e denotes the temperature deviation from the base temperature eo. 

(ii) Boundary Conditions 
In order to account for the temperature effect, the boundary is visualized 
(Christensen, 1971) to be composed of two regions, i.e., B 0 is that region of the 
boundary upon which the temperature is prescribed and (B-B6) is the complimentary 
region over which the surface is taken to be perfectly insulated against heat flow. The 
thermal boundary conditions can then be stated as 

e(x,t) = e(x,t), 

(14.168) 

x on (B-B6),t ~ 0 

(14.169) 

where ~i as a second-order tensor accounts for mechanical properties of the 
material. 



www.manaraa.com

278 

Combining the thermal boundary conditions (14.168) and (14.169) with the traction 
and displacement boundary conditions stated earlier for the isothermal problem, (14.108), 
then, the set of boundary conditions for the thermo viscoelastic problem is written as 

oij(x,t)ni = T;(x,t) 
U;(x,t) = U;(x,t) 

8(x,t) = 8(x,t) 

kg(x,t)8,;Il_j = 0 

(iii) Balance of linear momentum 

x on B6 

x on (B-B) 

The equations of (quasi-static) equilibrium are 

or, alternatively, the equations of motion are 

(iv) Strain-displacement relations, i. e., 

1 e . .(t) = -(u . .(t) + u . .(t)) 
I} 2 IJ j,l 

(v) Stress-strain relations 

For anisotropic materials: 

The relaxation constitutive relation is expressed as 

t t ( )-JR ( )aekz<~>A- J ae(t) o11 t- ifk1 t-t -u~- \jl . .(t-t)~ 
at y at 

0 0 

(14.170) 

(14.171) 

(14.172) 

(14.173) 

(14.174a) 



www.manaraa.com

279 

Meantime, the creep constitutive relation corresponding to (14.174a) is written as 

t aa ("t) t ae("t) 
e(t) = JCk1(t --c) _k_z -d-e- J a.,.(t --c) --d-e 

I) '1 a-c ,, a-c (14.174b) 
0 0 

In the case of thermorheologically simple materials, one may employ a stress-strain 
relation ofthe form (see Schapery, 1964) 

r a r _ ekz ae(-c) 
a (t) -JRk1(~ -~)-d-e -J\jl (~-~)-d-e 

I) I) ~ I) ~ (14.175a) 
0 0 

or, equivalently, 

(14.175b) 

where ~' introduced earlier in Section 8.10 (Chapter 8), is the so-called "reduced time" 
defined by the relation 

(14.176) 

Also, 

~ = J dtlari6), ~ 1 = J dt/afJ(6) (14.177) 
0 0 

where -c :<> t. 

The relaxation function \jlii(~) appearing in (14.175) is assumed to have the following 
exponential series form 

ljJ/~> = .E \jl<m>lj e -~'Ym + ljJ'lj (14.178) 
m 

where the constants \jlr> and \jJ'ii define the thermal stress characteristics of the material 
before loading (Schapery, 1964, 1967) and y m are appropriate exponent factors. Meantime, 
the relaxation moduli in (14.175) are considered (Schapery, 1964) to be given by 
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Riji~) = L R(m)ijkl e -tlym + Rlijkl (14.179) 
m 

On the other hand, when the temperature is constant, the relaxa- tion moduli may be taken 
as 

R ( I ) - ~ R(m) (-tlym)aa + R 
ifkl t,ae - ~ iJkl e ifkl (14.180) 

m 

which reflects the effect of constant temperature on relaxation (or creep) behaviour, that is, 
to simply shift the time scale. Accordingly, a0 is often referred to as "time shift factor"). 

The creep constitutive equation corresponding to ( 14.17 Sb) is 

~ a ~ 

I " akl 1 I " ae 1 Em= C.kl(~-~~-~ + a.(~-~~-~ 
lj o lj a~~ o lj a~~ 

(14.181) 

where the function aij(~) accounts for the strain response in the absence of the stress. It is 
expressed (Schapery, 1964), by 

ai~) = L aif (1-e -~ym) + aif (14.182) 
m 

where ar> and aij define the thermal strain characteristics of the material before loading. 

For an isotropic material, the relaxation constitutive relations corresponding to 

(14.174a) are 

(14.183) 

where a'ij and E'ij denote, respectively, the deviatoric components of the stress and strain. 
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The creep constitutive equations corresponding to (14.183) are expressed as 

t ao/(1:) 
e1 (t) = J C1(t- 1:) -'-~ - d1: 

y ac 
0 

(14.184) 
t ao (1:) t ae(c) 

ekk(t) =JCit-1:)-kk-- 3Ja(t-1:)--d1: ac ac 
0 0 

In the case of thermorheologically simple materials, constitutive equations for 
isotropic materials are expressed (Schapery, 1964) for the relaxation case by 

~ ae . ~ [ a o(~)=2fR(~-0_i!_~' + ()i,f).(~-0~ 
u a~' , ~ 

0 ~ 0 
(14.185) 

where, 

In (14.185), R(~), ).@and tjf(~) are relaxation functions which, for thermodynamic reasons 
(Schapery, 1964), are considered to have the forms 

m 

A(~) = L )_(m) e -~lym + Ae 
(14.186) 

m 

*<~> = I: *(m) e -~y m + *. 
m 

with constants having the properties 



www.manaraa.com

282 

Ym > 0 

R(m) ~ 0, Re ~ 0, L R(m) + Re > 0 
m 

2 K =A + -R ~ 0 e e 3 e 

m 

w ..... ~ "-··- K(m) define the bulk relaxation modulus 

K(~) = A(~) + ~R(~) = L K(m) e -E,!ym + K 
3 m e 

(vi) The heat conduction equation 

For isotropic materials: 

kij e = ~ft m(t- 't) ae(-c) dt + ~ft ljJ (t- 't) ar-y<-c) d-e 
e ·'1 at a. at '1 a. 

0 0 0 

For anisotropic materials: 

k _ a t ae(-c) a t aekk(•) 
-8 --Jm(t--c)--d-c +-jo/(t--c)--d-c eQ ,II at a. at a. 

0 0 

(14.187) 

(14.188) 

(14.189) 

(14.190) 

where k;i or k, m(t), and lj!ii(t) or lj!(t) are mechanical properties of the material. 

In the general anisotropic case, the Laplace transformed governing equations for the 
thermoviscoelastic boundary value problem are given by: 
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(i) Boundary conditions (Equations 14.170) 

8=8 

lr. 8 .n = 0 
~ ,IJ 

, onB6 

, on (B-B6) 

(ii) Balance of linear momentum 

The equations of quasi-static equilibrium (14.171) 

or, alternatively, the equation of motion ( 14 .172) 

where s is the Laplace transform variable 

(iii) Strain-displacement relations (1 4.124) 

- 1 - -
e," = -(u .. + u ) 

0 2 IJ ],1 

(iv) The relaxation constitutive relation (14.174a) 

283 

(14.191) 

(14.192) 

(14.193) 

(14.194) 

(14.195) 
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(v) The heat conduction equation (14.189) 

(14.196) 

The viscoelastic boundary value problem governed by the set of equations ( 14.191) 
to ( 14 .196) can be solved in the same manner as in the case of coupled thermoelastic 
problems. Consequently, the complete solution of the viscoelastic boundary value problem 
under consideration is obtained by inverting the transformed solution. The procedure here 
is the same as in the case of treating isothermal linear viscoelastic boundary value problems 
discussed earlier in this section. 

In problems where the coupling term involving Eij in (14.189) and (14.190) can be 
neglected, mechanical response problems and thermal response problems may be separated. 
Thus, after obtaining the temperature distribution, either by solving the heat conduction 
equation or from experimental results, the mechanical response problem would then be 
governed by (14.167) and (14.170) to (14.174). Integral transform methods could thus 
provide a useful tool in solving such problems. 

14.13. Study Problems 

11. Define and comment briefly on the implications of using the "Correspondence 
Principle" in the solution of boundary value problems in linear viscoelasticity. 

12. What is meant by a nonlinear viscoelastic material? Illustrate such response in both 
creep and relaxation. 

13. Extend your arguments, as pertaining to Problem 11 above, to the case of a nonlinear 
viscoelastic boundary value problem. 

14. Based on the elastic solution given earlier in Chapter 6, determine the stress 
distribution in rotating discs if the material is considered to be isotropic, linear 
viscoelastic. 

15. Assuming a linear thermal gradient, determine the pertaining form of the heat 
conduction equation in both isotropic and anisotropic linear viscoelastic materials. 

16. Re-attempt the analysis of Problem 14 above with the inclusion of an assumed linear 
thermal gradient. 
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CHAPTER 15 

TRANSITION TO THE DYNAMIC BEHAVIOUR OF 
STRUCTURED AND HETEROGENEOUS MATERIALS 

15.1. Introduction 

The current technology of the design and manufacturing of laminated and fibre-reinforced 
composites is faced with problems essentially related to the inherent nature of the mechanical 
response of the different constituents of the microstructure, the formation of interfaces 
between such constituents and the evolution of the associated deformation processes under 
loading. Optimal design of such material systems is becoming a very progressive and 
challenging domain in both applied mechanics and material science. 

Thus, the increasing use of such materials is inciting new developments to be made 
within the context of macro- and micro-mechanical constitutive modelling, applications of 
such materials under variable boundary conditions, experimental testing methods, 
computational methods of analysis and optimization. A new dimension of optimal design is 
being realized by building new composite systems through direct tailoring of the 
microstructure, e. g., by judicious reinforcement and mixing (hybridization) of the constituents 
of the microstructure within a specific topological frame of reference and to satisfy the 
boundary conditions involved. 

In this context, theoretical and experimental studies of the dynamic stress-strain 
relations of hybrid composites have become significantly important. The increased interest in 
the subject matter has been motivated recently by the increasing number of engineering 
applications and, as well, by the contributions provided by such studies to a better 
understanding of the mechanisms of deformation of such material systems when subjected to 
a dynamic loading environment. This chapter reviews some research efforts pertaining to the 
microdynamics of polymeric composite systems. For other classes of composite systems, the 
reader is referred to the bibliography cited at the end of the chapter. 

15.2. Influences of Material Properties on Dynamic Behaviour 

The dynamic mechanical behaviour of fibre-reinforced composite materials is governed 
primarily by their stiffitess and damping properties. One of the goals of composite 
micromechanics has been to predict these macromechanical properties by using information 
on constituent microstructural properties and the interaction between constituent elements 

295 
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ofthe microstructure; e. g., Hashin and Rosen (1965), Hashin (1970 a&b) and Jones (1975). 
Several authors report values for elastic moduli as deduced from vibration tests of beams and 
rods; for instance, Schultz and Tsai (1968 &1969), Adams and Bacon (1973 a&b) and Paxson 
(1975). Gibson and Plunkett (1976) presented a critical review of the literature on dynamic 
properties of fibre-reinforced composites. Polymeric composite systems exhibit in general 
viscoelastic behaviour (see Chapter 8). The viscoelastic nature of glass fibre/unsaturated 
polyester, for instance, has been studied, e. g., by Suzuki and Miyano (1976) and that of 
carbon fibre/epoxy composites was investigated by Miyano eta/. (1986), among others. 
Meantime, some aspects of the dynamic behaviour of different classes of polymeric 
composites have been investigated by, e.g., Cavaille et a/. (1987), Chua (1987), Kodama 
(1976), Reed (1979) and Kimoto (1990). 

Kimoto (1990) investigated the influence ofthe reinforcement surface treatment on 
the viscoelastic response characteristics of glass fibre (GF)/epoxy composites. In this, time 
and temperature dependence of flexural fracture properties and dynamical properties of 
different composites, within the mentioned class, were investigated. The epoxy resin used was 
a mixture of diglycidyl ether of bisphenol-A and a class of aminopropyl curing agent. These 
were used in a stoichiometric ratio of 2: 1. Type E of GF woven cloths were used as 
reinforcement. The cloths were treated with two kinds of silane coupling reagents, namely, 
y-glycidoxypropyltrimethoxysilane (ES) and vinyltris (fJ-methoxyethoxy)-silane (VS). Glass 
fibre woven cloths with only heat cleaning treatment (HC) were also employed in the 
measurement of dynamic mechanical properties. GF composite plates were prepared by a 
hand-lay-up method using two sheets ofGF woven cloths for the purpose of the dynamic test. 
The volume ratio ofGF content was about 25 vol%. Epoxy resin and composite plates were 
cured at room temperature for 24h, and then at 80"C for 3h. GF composite plates containing 
surface treated GF are denoted, according to the above terms, by ES-P, VS-P and HC-P. 
Flexural load was applied by a three-point bending method. A span of 50 mm was maintained 
in all measurements, and the loading bar has a fixed diameter of 10 mm. Strain rates were 
calculated from the cross-head speed. The flexural stress ( o) and the flexural strain (E) were 
calculated from the maximum load and the corresponding displacement, respectively. 
Dynamic properties were measured using a viscoelastic spectrometer at a frequency of 10 Hz. 

Figures 15.1 and 15.2, due to Kimoto (1990), show, respectively, values of flexural 
stress (o) and flexural strain (E) obtained for ES-P as a function of strain rate yat various 
constant temperatures. Similar results were obtained for the epoxy matrix and the VS-P 
composite. As shown in Figure 15.2, the flexural strain E varies with temperature and y in 
a complex manner. 

When the curves in Figure 15.1 were joined smoothly to the curve at 60"C, by 
applying horizontal shift on a logarithmic scale of y, a master curve of the flexural stress o 
for ES-P was produced as shown in Figure 15.3. In a similar manner, master curves of o for 
epoxy and VS-P were produced. As shown in Figure 15.3, the flexural stress o decreases 
monotonously with decreasing y (or increasing temperature), and the shapes of the master 
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curves, for the ES-P and VS-P composites, are similar to each other. Master curves for the 
flexural strain E were also obtained by Kimoto (1990) and are shown in Figure 15.4. The 
latter curves have a minimum (for epoxy resin) or a maximum value for (GF composites). 
With reference to Figure 15.2, the flexural strain E , as mentioned earlier, varies with 
temperature and y in a complex fashion which, in tum, is affecting the pertaining master 
curves ofFigure 15.4. 

3 

Figure 15. 1. Flexural strength for ES-P (glass fibre-epoxy composite; reinforcement is 
surface treated with r- glycidoxpropyltrimethoxy silane (ES)) as a function of strain rate 
at various constant temperatures. "Reprinted from Journal of Materials Science 25 (1990) 
3327-32, Kimoto, M, Flexural properties and dynamic mechanical properties of glass fibre
epoxy composites, with kind Permission from Chapman and Hall Ltd.". 
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Figure 15.2. Flexural strain for ES-P (glass fibre-epoxy composite; reinforcement is 
surface treated with r- glycidoxpropyltrimethoxy silane (ES)) as a function of strain rate 
at various constant temperatures. "Reprinted from Journal of Materials Science 25 ( 1990) 
3327-32, Kimoto, M., Flexural properties and dynamic mechanical properties of glass fibre
epoxy composites, with kind Permission from Chapman and Hall Ltd.". 

Figure 15.5 shows the temperature dependence of the storage moduli (E') obtained for the 
matrix epoxy, ES-P, and VS-P. This figure shows also the temperature dependence ofE' for 
HC-P as a reference. As seen from this figure, E' values were larger for GF composites by 
comparison with those pertaining to the epoxy resin over the considered temperature range, 
and the difference in the values of the referred-to moduli is more remarkable in the rubbery 
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region than in the glassy region. Such an increase in E' for composites in the rubbery region 
has been, also, observed by Souma (1982) and Lewis and Nielsen (1970). The magnitude of 
E' for GF composites was greater for ES-P than for VS-P over the entire temperature range. 

o. 
~2 
b 

log(rarl(log min-1) 

Figure 15.3. Master curves of flexural strength a (D) Matrix epoxy, (0) ES-P, (.:1) VS-P 
(glass fibre-epoxy composite; reinforcement is surface treated with ~ methoxyethoxy silane 
(VS)). "Reprinted from Journal of Materials Science 25 (1990) 3327-32, Kimoto, M., 
Flexural properties and dynamic mechanical properties of glass fibre-epoxy composites, 
with kind Permission from Chapman and Hall Ltd.". 

Figure 1S. 6 shows the temperature dependence of the loss modulus E", for matrix 
epoxy, ES-P, VS-P and HC-P. As shown in this figure, temperature dependence of E" for 
epoxy has a peak maximum at - 7S°C. The temperature dependence of E" of GF composites 
also shows a shoulder at -7S°C, and in addition, other peaks appear on the higher temperature 
side (see Kodama (1976) and Reed {1979). 
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Agbossou et al (1993) studied a series of polystyrene/glass bead- compos_!!es by using 
9Y.namic spectrometry. The composite specimens were based on polystyrene (M0 = 99 500, 
Mw= 306 800) reinforced by 6%-50% volume fraction of glass beads. Two different size 
distributions of particles were used: The first is within the range of 1-45 J.lm and the second 
is within the range of 70-110 Jlm. The glass beads were dried at 1 00°C, but no particular 
treatment was performed on them. The composite was extruded at 200°C. The extruded 
samples, of varying volume fraction, were moulded at 200°C under high pressure (200 bar) 
and cooled at room temperature. In order to give the same thermal history to each sample, 
specimens were heated at temperatures higher than their glass temperature and then cooled 
to room temperature at the same cooling rate. The moulded samples were finally cut to the 
following dimensions: 20 mm x 4 mm x 5 mm. For dynamic analysis, frequency scans were 
performed, using a Viscoanalyser, by increasing the temperature from 30°C to 200°C at 
several frequencies over the range of 5-l 00 Hz. Several measurements were repeated for both 
frequency and temperature scans in order to verity that no physical ageing occurred in the 
material during the experiment. 

I 
o~~-~,o~~~~--~5~~~~~o~~~~~5~~ 

log(T arl (Log min-1) 

Figure 15.4. Master curves of flexural strain e (D) Matrix epoxy, (0) ES-P, (d) VS-P. 
"Reprinted from Journal of Materials Science 25 (1990) 3327-32, Kimoto, M., Flexural 
properties and dynamic mechanical properties of glass fibre-epoxy composites, with kind 
Permission from Chapman and Hall Ltd.". 
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Figure 15.5. Temperature dependence of the storage modulus E': (D) Matrix epoxy, (0) 
ES-P, (d) VS-P, (V' ) HC-P (glass fibre-epoxy matrix; reinforcement is with only heat 
cleaning treatment). "Reprinted from Journal of Materials Science 25 (1990) 3327-32, 
Kimoto, M., Flexural properties and dynamic mechanical properties of glass fibre-epoxy 
composites, with kind Permission from Chapman and Hall Ltd.". 
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Plots oflog E' and the loss tangent tan 3 of a polystyrene matrix at five frequencies, 
i.e. 5, 10.5, 22.3, 47.2 and 100Hz, versus temperature are shown in Figure 15.7. The angle 
3 is of particular interest as it represents the phase angle by which the strain lags behind the 
stress in a viscoelastic material (e.g., Haddad, 1995). Accordingly, the loss tangent tan 3 is 
simply the ratio between the loss modulus E" and the storage modulus E'. As demonstrated 
in Figure 15.7, the tan 3 maxima and logE' plots, as related to the temperature, show a 
frequency dependence. 

Figure 15.8 shows logE', logE" and tan a spectra recorded at 5Hz for composites 
reinforced by 6%, 15%, 21%, 3 5% and 50% volume fraction of fillers with a size distribution 
within the range of70-110 pm. As illustrated in Figure 15.8, with increasing volume fraction 
of fillers, the magnitude of the mechanical relaxation is decreased and the tan a maximum is 
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shifted towards higher temperatures. 
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Figure 15.6. Temperature dependence of the loss modulusE" (D) Matrix epoxy, (0) ES-P, 
(A) VS-P, (V') HC-P. "Reprinted from Journal of Materials Science 25 (1990) 3327-32, 
Kimoto, M., Flexural properties and dynamic mechanical properties of glass fibre-epoxy 
composites, with kind Permission from Chapman and Hall Ltd.'. 

Figure 15.9, due to Agbossou eta/. (1993), shows logE', logE" and tan() spectra 
recorded at 5 Hz for composites reinforced by 50% volume fraction of glass beads with two 
different size distributions, i.e., within the ranges of 1-45 11m and 70-110 !liD. For 50% 
volume fraction of glass beads, the composite reinforced with the largest glass beads shows 
a higher magnitude of relaxation than that exhibited by the composite reinforced by the 
smallest ones. Thus, for similar volume fraction of fillers, it can be observed that the 
reinforcement-effect increases with decreasing average size of glass beads. Then, for similar 
volume fraction of fillers, the specific surface of the glass beads increases as their average size 
decreases. Thus, it can be concluded that the interface related to the specific surface of the 
glass beads could influence the dynamic response behaviour of such composite materials. In 
this context, it may be suggested, following Agbossou eta/. (1993) , that the interface in such 
composite materials could tend to decrease the molecular motion ability of the matrix and the 
interface contribution appears to be greater in composites reinforced with the smallest glass 
beads. 
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Figure 15. 7. Plots of log E' and tan 6 versus temperature for polystyrene matrix for 
various frequencies: (•) 5 Hz, (D) 10.5 Hz, (•) 22.3 Hz, (O) 47.2 Hz and(+) 100Hz. 
"Reprinted from Journal of Materials Science 28 (1993) 1963-72, Agbossou, A., Bergeret, 
A., Benzarti, K. and Alberola, N., Modelling of the viscoelastic behaviour of amorphous 
thermoplastic/glass beads composites based on the evaluation of the complex Poisson's ratio 
of the polymer matrix, with kind Permission from Chapman and Hall Ltd.". 

15.3. "Discontinuous" vs. "Continuous" Fibre-Reinforcement 

303 

185 

In the study of the dynamic behaviour of polymeric material systems, loss modulus is as 
important as storage modulus, as the former measures sound and vibration damping capacity. 
Mclean and Read (1975) showed both experimentally and analytically that discontinuous 
reinforcement of a rubber-like viscoelastic matrix can produce a large increase in both moduli 
in the axial direction. On the contrary to the case of continuous fibre-composite systems, 
where the ratio of compliance to breaking strength is invariant for a given fibre material; with 
discontinuous fibre-systems, however, this ratio can be varied. A variable ratio of the 
compliance to breaking strength would give more latitude in the design of various structural 
and mecharucal components using composite materials. 
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Figure 15.8. Plots of log E', log E" and tan I> versus temperature at 5 Hz for 
polystyrene/glass beads 70-110 Jll1l composite reinforced by: (•) 6%, (D) 15% (•) 21%, (o) 
35%, and (+) 50% volume fraction of fillers. "Reprinted from Journal of Materials 
Science 28 (1993) 1963-72, Agbossou, A., Bergeret, A., Benzarti, K. and Alberola, N., 
Mcxlelling of the viscoelastic behaviour of amorphous thermoplastic/glass beads composites 
based on the evaluation of the complex Poisson's ratio of the polymer matrix, with kind 
Permission from Chapman and Hall Ltd.'. 

Based on a strain energy model, McLean and Read (1975) assumed that the sum of the strain 
energy in the matrix and that in the fibres would give the magnitude of the strain energy in the 
composite, i.e., 

(15.1) 

and 
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(15.2) 

where a and e indicate, respectively, the longitudinal stress and strain. 

From their model, McLean and Read arrived at the following expression of the 
composite longitudinal modulus Ec in terms ofthat ofthe matrix Em and ofthe fibre£1 . 
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Figure 15.9. Plots of logE', logE" and tan 6 versus temperature at 5 Hz for: (•) 
polystyrene/glass beads 1-45 Jllil composites reinforced by 50% volume fraction of fillers, 
and for (D) polystyrene/glass beads 70-100 Jllil composites reinforced by 50% volume 
fraction of fillers. "Reprinted from Journal of Materials Science 28 (1993) 1963-72, 
Agbossou, A., Bergeret, A., Benzarti, K. and Alberola, N., Modelling of the viscoelastic 
behaviour of amorphous thermoplastic/glass beads composites based on the evaluation of 
the complex Poisson's ratio of the polymer matrix, with kind Permission from Chapman 
and Hall Ltd.". 
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(15.3) 

in which vm and Vf indicate, respectively, the volume fraction of the matrix and the fibre, 
e is the fibre length and s is the transverse spacing between the fibres. 

Using Eqn. (15.3), the composite modulus Ec is plotted versus the fibre volume 
fraction Vj in Fig. 15.10 as the solid line for the polymer-carbon fibre composite: Em= 0.03 
GN m·2, Er = 400 GN m·2, and the value of els assuming a square array of fibres on a 
transverse section is calculated as 

Q/s (15.4) 

where the fibre aspect ratio r is considered to be equal to 112. Equation (15 .3), however, 
does not apply when Vr~O as a term pertaining to the effect of an unreinforced matrix has not 
been included. 

In Fig. 15. 10, the lower curve shows the calculated influence of the fibre volume 
fraction on the longitudinal composite modulus Ec in the case of discontinuous reinforcement. 
The upper curve, however, relates to continuous reinforcement when Er is much greater than 

Em. 

In the mentioned paper, the composite loss modulus Ec • is defined as 

energy dissipated per cycle 

peak energy stored per cycle 

in which the symbol h expresses some appropriate function. 

(15.5) 

Equation (10.5) was further expressed in terms of the constituent parameters as 

(15.6) 
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Equation (15.6) also follows from the elastic-viscoelastic correspondence principle which 
enabled the authors to replace Ec and Em in Eqn. ~15.3) by complex moduli 
Ec* = e_: + .; E:' and £_; = E~ + i E.::. The curve of E; versus Vr given by Eqn. (15.6) is 
drawn m Ftg. 15.11 usmg an expenmental value for Em of 0.041 GNm-2. 

1000.-------------------------------. 

--Er 

100 

10 

1.0 

0.1 

--Em 

o.o1 o!:---------------o:f.71 ______________ o,.~.2 

vf 

Figure 15.10. The lower curves show the calculated influence of Vr on longitudinal 
composite modulus Ec in the case of discontinuous reinforcement. The upper curve 
relates to continuous reinforcement when E1 > Em. The circles are experimental 
measurements. Carbon fibres in soft polymer. "Reprinted from Journal of Materials 
Science 10 (1975) 481-92, Mclean, D. and Read, B. E., Storage and loss moduli in 
discontinuous composites, with kind Permission from Chapman and Hall Ltd.". The 
equation numbers shown in the figure pertain to the original paper. 



www.manaraa.com

308 

E' 
(GN ':n-2) 

100 ,-------------------, 

Discontinuous fibres 

10 -z 

1.0 

0.1 

Continuous fibres 

0·0 0k------~o.•1--------,Jo.2 v, 
Figure 15.11. Influence of Vf on longitudinal loss modulus E.". The two upper lines are 
theoretical values for discontinuous fibres, and the lower line is the theoretical result for 
continuous fibres when Ej' < < Em" . The circles are experimental measurements. Carbon 
fibres in soft polymer. "Reprinted from Journal of Materials Science 10 (1975) 481-92, 
Mclean, D. and Read, B. E., Storage and loss moduli in discontinuous composites, with 

kind Permission from Chapman and Hall Ltd.". The equation numbers shown in the figure 
pertain to the original paper. 

15.3.1. DESIGN FLEXIBILITY 

In some industrial applications, rubber is reinforced with continuous steel wires or with 
continuous polymer fibres. The reinforcement is added to raise the longitudinal tensile 
strength. At the same time, it significantly reduces the longitudinal compliance, thus, casting 
away one of the favourable merits of rubber. Moreover, little variation is possible in the ratio 
of longitudinal modulus to longitudinal strength. To show that with discontinuous 
reinforcement much greater latitude in the ratio is possible, McLean and Read (1975) used, 
as presented below, the equations for compliance and tensile strength. 

Continuous Reinforcement 
With continuous reinforcement, the compliance Ccc is expressed by 
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1 1 c =-=--
cc E E V 

cc f f 
(15.7) 

where the subscript cc refers to continuously reinforced composite and the elastic modulus 
of the matrix has been neglected, which, in view of the authors, is a reasonable approximation 
for the case, for instance, of steel fibres in rubber. The breaking strength, of the composite, 
ob is calculated by 

(15.8) 

where ofb is the fibre breaking strength and, again, the matrix contribution has been neglected. 

Combining equations (15.7) and (15.8), the ratio of compliance/strength, for a 
composite with continuous reinforcement, is 

ccc cr 
(15.9) 

in which Cr is the fibre compliance. The ratio (15.9) is invariant with any given matrix and 
fibre for a given composite ultimate strength since the fibre-volume fraction Vr is then fixed. 

Discontinuous Reinforcement 
In this case, Mclean and Read (1975) calculated the composite ultimate strength by 

(15.10a) 

where it is assumed that one third of the applied load is carried by the matrix. This is under 
the condition that ob < 1/3 omb Vm, omb being the breaking strength of the matrix. In the 
case of rubber reinforced with steel, for instance, ofb is approximately equal to 10 omb so that 
Vr ~ 0.05. A second condition is that the stress transfer between the matrix and the fibre 
must be adequate. When these two conditions are met, Ccal ab is obtained from equations 
(15.3) and (15.10), and it can be varied considerably by altering lis, i.e. by varying the aspect 
ratio r. 
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1 1 c =-~--
cd Ecd Er Vr 

(15.10b) 

Here, Ccd is the compliance for the composite with discontinuous reinforcement. A measure 
of the extra latitude offered by discontinuous reinforcement is given by the range which ccd 

I Ccc can take for a given breaking strength ob. 

From equations (15.9) and (15.10), it follows that 

+ 
16 
4s 

200,-------.-------.--------.-------, 

Discontinuous Breaking strength 
V1 Nmm-2 

Fibre aspect ratio r 

(15.11) 

Figure 15.12. Showing the extra design flexibility offered by discontinuous versus 
continuous reinforcement. c,. is the compliance of rubber reinforced with steel wires of 
aspect ratio r. C"' is the compliance of rubber reinforced with continuous steel wires to have 
the same breaking strength. The ratio C" IC,. can be very large. "Reprinted from Journal 
of Materials Science 10 (1975) 481-92, Mclean, D. and Read, B. E., Storage and loss 
moduli in discontinuous composites, with kind Permission from Chapman and Hall Ltd.". 
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The value of ccd ICc for different values of r and vI has been calculated by 
McLean and Read (1975) with E1= 2x 105 and Em= 1 Nmm -z, which are considered 
to be appropriate values for steel and rubber, respectively. The results are shown on Fig 15.12 
due to McLean and Read (1975). The tensile strength indicated on Fig. 15.12 is derived from 
Eqn. (15.10) assuming alb= 1000 Nrnm·2• Fig. 15.12 shows, e.g., that for a sample breaking 
strength of 33 N mm·2, the compliance can be increased 100-fold if continuous wire is 
replaced by a discontinuous one. Fig.15 .12, also, illustrates the range of variation of Ccd for 
a given tensile strength. The ordinate axis shows the wide range of Ccd available by varying 
the aspect ratio r. 

Dynamic mechanical measurements over a range of temperature provide valuable 
insight into the structure, morphology and viscoelastic behaviour of polymeric materials. 
These measurements form an important part of the approach for establishing relaxation 
transitions. Akay (1993) cautioned, however, that care must be taken in the interpretation 
of dynamic mechanical analysis (DMA) spectra of complex material systems such as advanced 
polymer composites, particularly when determining the glass-transition temperature Tg . The 
latter is commonly defined as the temperature corresponding to the maximum value of the 
loss tangent (tan 0). The glass transition temperature Tg is also sometimes defined as the 
temperature corresponding to the maximum value of the loss modulus E" , or, alternatively, 
as the temperature of the maximum change in real modulus E . DMA data of continuous 
carbon-fibre (CF) reinforced epoxy laminates have been studied by Akay (1993) and 
represented here in Figures 15.13 and 15.14. These data indicate that glass transition, in the 
two considered materials, occurred over different temperature intervals depending on the 
mode of testing. As shown in the indicated figures, a sharp transition of low intensity is 
indicated in the longitudinal mode where the properties are fibre dominated. The fibres are 
stiffer and carry, in this mode, more load than the matrix and, thus, the observable properties 
are not appreciably sensitive to variations in the mechanical properties of the matrix. In the 
transverse mode, however, both the fibres and the matrix experience the applied stress and, 
by consequence, the properties of the composite show much greater sensitivity to variations 
in the properties of the matrix. The data clearly show that glass transitions occurred over a 
wider temperature range when the tests were conducted in the transverse mode. This was 
attributed by the authors to a combination of the following reasons: 

(i) Non-uniform compliance in the matrix due to various fibre-resin 
interactions. 

(ii) Non-uniformity of the temperature distributions within the 90° 
specimens as compared withe the 0 o spectmens. 

With reference to Figures 15. 13 and 15. 14, different values of Tg , depending on its 
definition, can be obtained and this can be misleading: 

Tg expressed as the temperature corresponding to the maximum value of tan o 
produced a higher value in the transverse mode compared with the value obtained in 
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the longitudinal mode by as much as 25° C without any fundamental reason other than 
the broadening of the transition region. 

Alternatively, the glass transition temperature Tg as corresponding to the maximum 
value of E" revealed increases from zoe to l4°C in the longitudinal mode compared 
to the transverse mode. This is more realistic since in the longitudinal mode most of 
the load is carried by the fibres and thus the matrix experiences a delayed transition. 
Further, the definition of Tg by the maximum value of E"also indicates more 
precisely the temperature at which stiffness (as expressed byE' ) suffers significant 
deterioration. 
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Figure 15.13. Dynamic mechanical properties for CF/epoxy-a at (A) transverse, (B) 
longitudinal modes of testing. "Reprinted from Composite Science and Technology 47, 
Akay, M., Aspects of dynamic mechanical analysis in polymeric composites, 419-23, 1993, 
with kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington 
OX5 1GB, UK". 
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Thus, in the class of composite materials considered, Tg , as defined by the 
temperature corresponding to £"-maximum value, is considered to be a more 
consistent and an appropriate index than the one based on the maximum value of the 
tangent modulus tan o (Akay, 1993). 

Gerard, Perret and Chabert ( 1990) studied the dynamic mechanical properties of 
unidirectional carbon fibre/epoxy matrix composites in order to determine the influence of the 
presence of carbon fibre and the effect of surface treatment (untreated, oxidized and sized) 
on the behaviour of epoxy matrix. The study shows that when carbon fibres are introduced 
at different volume fractions (from 40% to 70%), the mobility of the macromolecular chains 
of the epoxy matrix is reduced at the fibre/matrix interface. An oxidization treatment, leading 
to a larger number of functional groups present at the interface, increases this effect by 
creating additional interactions. However, an epoxy sizing induces a higher mobility by 
creating less crosslinked interphases. By studying the viscoelastic properties in a large range 
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Figure 15.14. Dynamic mechanical properties for CF/epoxy-b at (A) transverse, (B) 
longitudinal modes of testing. "Reprinted from Composite Science and Technology 41, 
Akay, M., Aspects of dynamic mechanical analysis in polymeric composites, 419-23, 1993, 
with kind pennission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington 
OXS 1GB, UK". 
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of temperatures and frequencies, the main relaxation of a component of the sizing, displaying 
a phase separation in the interphase, could be obsetved as a shoulder of the secondary 
relaxation peak of the epoxy matrix. In this context, dynamic mechanical measurements were 
performed by the authors with a polymer Lab. DMT A apparatus in a temperature range from 
-120 to 250°C and a frequency range from 0.033 to 10Hz. As shown in Figure 15.15, the 
viscoelastic spectra of the epoxy matrix in unidirectional composites display three relaxations: 

10 
~ 
a.. 

w 
(.!) 

g 

9,5 

i) A major relaxation a. It is associated with the glass transition of the DGEBA
MDA matrix and occurs at a high temperature of about 180° C. 

ii) A secondary relaxation P: It occurs at a low temperature (near- 65°C at 0.1 
Hz). It is associated with motions of small parts of the macromolecular chains 
(hydroxyether groups and diphanylpropane units) 

iii) A third relaxation y: It occurs at about 50 oc and corresponds to unreacted 
molecular segments and/or crosslink inhomogeneities 

.................. 

·----------------------------------

-100 0 100 200 
TEMPERATURE (•c) 

Figure 15.15. Dynamic mechanical spectrum of unidirectional composite material based 
on DGEBA-MDA matrix and AS4 (oxidized carbon fibre), 51% vol. fraction, at 1Hz. 
"Reprinted from Controlled Interfaces in Composite Materials, Proc. Third International 
Conference on Composite Interfaces, H. Ishida (ed.), May 21-24, 1990, Cleveland, Ohio, 
pp. 449-55, Gerard, J. F., Perret, P. and Chabert, B., Study of carbon/epoxy (or interface): 
Effect of surface treatment of carbon fibres on the dynamic mechanical behaviour of 
carlx>n/epoxy unidirectional composites, with kind Permission from Elsevier Science Ltd., 
The Boulevard, Langford Lane, Kidlington OX5 1GB, UK". 
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The major relaxation, a, of the epoxy matrix in the unidirectional composites was 
found to be greatly influenced by the presence of carbon fibres, Fig. 15 .16. The increase of 
Ta with fiber volume fraction was attributed by the authors to the restriction of the mobility 
of the macromolecular chains at the interface due to interactions with the fibre surface. For 
the p relaxation, Fig. 15 .17, an additional peak could be observed as a shoulder of the p peak 
at high temperature and for low frequency measurements. In this, the authors postulate that 
the carbon surface restricts the mobility of macromelocular chains by creating interactions. 
Surface treatments such as oxidization which introduce additional functional groups on the 
fibre surface, induce an added rigidity at the interfacial zones. However, epoxy sizing leads 
to a larger mobilty by creating less crosslinked interphases. 

Gibson and Plunkett (1976) considered the determination, both analytically 
and experimentally, the elastic stitfuess and internal damping ofE-glass fiber-reinforced epoxy 
beams under flexural vibration. A mathematical model for predicting the effective complex 
moduli of unidirectional and (0/90) crossply laminated glass-epoxy beams to flexural vibration 
was presented. The model, which is an extension of previous work by Hashin and Rosen 
(1965), employs the complex moduli of the matrix and of the fibres, together with geometric 
information pertaining to the microstructure, to predict the effective complex moduli of the 
various components. Upper and lower bounds on the moduli, due to Hashin (I 965), were 
used to show the effects of fibre packing geometry. Comparison of measured and predicted 
values of the complex moduli with predicted bounds on the moduli shows that, for small 
vibration amplitudes, the predicted values are reasonably accurate. In this context, it was 
concluded by Gibson and Plunkett (1976) that damping and stiffness are independent of the 
vibration amplitude as long as the maximum strain value does not exceed the threshold strain 
for material damage. However, once this threshold strain is exceeded, permanent changes 
occur in damping and stiffness. The resulting increase in damping is much more significant 
than the corresponding reduction in stiffness. 

In the work of Gibson and Plunkett (I 976), the composite material selected for the 
forced vibration experiments was 3M Scotchply 1002, an E-glass reinforced epoxy, in both 
unidirectional and (0/90) crossply configurations. Specimens of pure epoxy, transverse 
unidirectional, longitudinal unidirectional, and (0/90) crossply material were tested in order 
to find the pertaining storage and loss moduli. Specimens of double-cantilever type were 
machined from pre-cured 51 ply thick panels with each ply having a nominal thickness of 
0.25mm (0.01 ").Epoxy matrix specimens, of the same double-cantilever type, were cut from 
a 3.3 mm (0.13") thick sheet of cured epoxy. 

Specimens, after being clamped, were excited in a steady-state, resonant flexural 
vibration mode by an electromagnetic shaker while measurements of specimen resonant 
frequency, base acceleration, and bending strain were made. Electrical resistance strain gages, 
bonded to the surface of the specimen, were used to measure bending strain, while the base 
acceleration was measured by a piezoelectric accelerometer mounted on the specimen support 
clamp. An electronic frequency counter was used to measure the frequency of the 
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accelerometer signal. 

Storage and loss moduli found for each series of resonant dwell tests are shown in 
10.18 to 10.22. Static storage moduli determined by tensile tests (for the matrix) or 3-point 
flexture tests (for the composites) are also presented for comparison with the presented 
dynamic values. Figures 15.19 to 10.22 show the predicted moduli and predicted bounds on 
the composite moduli. 

As shown in Fig. 15 .18, the matrix loss modulus, Em", increased by nearly a factor of 
two over the range of test frequencies, while the storage modulus, E,..' , increased by only 9%. 
Fig. 15.19 shows very good agreement between measured and predicted values of the 
transverse modulus. 
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Figure 15.16. Dynamic mechanical spectra (at 0.1 Hz) for unidirectional composites based 
on different volume fractions of carbon fibres: (•) 60o/o, (~) 64.4%, (~) 68 %. "Reprinted 
from Controlled Interfaces in Composite Materials, Proc. Third International Conference 
on Composite Interfaces, H. Ishida (ed.), May 21-24, 1990, Cleveland, Ohio, pp. 449-55, 
Gerard, J. F., Perret, P. and Chabert, B., Study of carbon/epoxy (or interface): Effect of 
surface treatment of carbon fibres on the dynamic mechanical behaviour of carbon/epoxy 
unidirectional composites, with kind Permission from Elsevier Science Ltd., The Boulevard, 
Langford Lane, Kidlington OX5 I GB, UK". 
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Figure 15.17. p relaxation ( l) of the epoxy network in UD carbon/epoxy composite as a 

function of a frequency of measurement, (48% vol. Fraction of T300 carbon fibres) 

(additional relaxation ( I ) due to the sizing) (a vertical shifting has been used to clarify the 

figure). "Reprinted from Controlled Interfaces in Composite Materials, Proc. Third 

International Conference on Composite Interfaces, H. Ishida (ed.) , May 21-24, 1990, 

Cleveland, Ohio, pp. 449-55, Gerard, J. F., Perret, P. and Chabert, B., Study of carbon/ 

epoxy (or interface): Effect of surface treatment of carbon fibres on the dynamic mechanical 

behaviour of carbon/epoxy unidirectional composites, with kind Permission from Elsevier 

Science Ltd., The Boulevard, Langford Lane, Kidlington OX5 1GB, UK". 
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Comparison of the magnitudes of Er" for the transverse ply (Figure 10 .19) with 

those of EL' for the longitudinal ply (Figure 15.20) indicates that, in the crossply laminate, 

most of the dissipation occurs in the transverse plies. Since the matrix is far more dissipative 

than the fibers are, one would expect that the configuration in which the matrix is subjected 

to the greatest strain (the transverse ply) would be more dissipative than the configuration in 

which the matrix carries the least strain (the longitudinal ply). As shown in Fig. 15.20, the 

value of EL' determined by static flexure shows good agreement with measured and predicted 

dynamic values. Although, as shown in Fig. 15.20, the relative differences between predicted 

and experimentally determined values of EL" are significant, the corresponding relative 
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differences are not as great for the 0/90° cross ply laminate, as shown in Figure 15. 21. In the 
latter case, the experimentally determined values of Ec" are slightly greater than the 
predicted values, but are generally below the upper bound. The differences are attributed by 
the Gibson and Plunkett (1976) to the longitudinal plies, as the resulting calculated values of 
the crossply loss modulus are much closer to the experimentally determined values than are 
the calculated values based on the properties of the fibers and the matrix (Figure 15.22). 
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Figure 15.18. Matrix storage and loss moduli versus frequency. "Reprinted from J. 
Composite Materials 10, Gibson, R. F. and Plunkett, R., Dynamic mechanical behaviour 
of fibre-reinforced composites: Measurement and analysis, 325-41, 1976, with kind 
permission from Technomic Publishing Co. Inc., Lancaster, P A". 
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Among other conclusions arrived at by Gibson and Plunkett (1976), one may 
emphasise the followings: 

1. Measured and predicted storage moduli of the glass-epoxy composites tested are 
practically independent of vibration frequency over the nominal range from static to 
500Hz. 

2. Measured and predicted loss moduli of the composites all increased with increasing 
frequency in the range from static to 500 Hz. Frequency dependence of the composite 
loss moduli is governed by the viscoelastic behaviour of the epoxy matrix. 
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Figure 15.19. Storage and loss moduli versus frequency for transverse ply material. 
"Reprinted from J. Composite Materials 10, Gibson, R. F. and Plunkett, R., Dynamic 
mechanical behaviour of fibre-reinforced composites: Measurement and analysis, 325-41, 
1976, with kind permission from Technomic Publishing Co. Inc., Lancaster, PA". 
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3. The predicted and measured values of the complex transverse and longitudinal 
extensional moduli are within the predicted bounds on the transverse moduli; actual 
storage moduli are close to the lower bound on the storage modulus, while actual loss 
moduli are close to the upper bound on the loss modulus. 

4. Damping and stiffiless of the crossply laminate tested in flexure are independent of 
amplitude as long as the maximum strain value does not exceed the magnitude of the 
fracture strain of the transverse plies, otherwise, the material damage causes increased 
damping and decreased stiffiless. 

5. Damping is far more sensitive to microstructural damage in the composite than is 
stiffness. 
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Figure 15. 20. Storage and loss moduli versus frequency for longitudinal ply material. 
"Reprinted from J. Composite Materials 10, Gibson, R. F. and Plunkett, R., Dynamic 
mechanical behaviour of fibre-reinforced composites: Measurement and analysis, 325-41, 
1976, with kind permission from Technomic Publishing Co. Inc., Lancaster, PA" 
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Figure 15.21. Storage and loss moduli versus frequency for 0/90 crossply laminate. 
Theoretical values found from rnicromechanical analysis of plies. "Reprinted from J. 
Composite Materials 10, Gibson, R. F. and Plunkett, R., Dynamic mechanical behaviour 
of fibre-reinforced composites: Measurement and analysis, 325-41, 1976, with kind 

permission from Technornic Publishing Co. Inc., Lancaster, PA". 

15.4. Sheet Molding Compounds (SMC) 
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Recent activity in composite materials research in the automobile industry has led to 
the development of inexpensive choped fibre reinforced plastics, often referred to as sheet 
molding compounds (SMC). These materials are generally made up of25.4 mm (1 in) long 
glass fibres randomly dispersed in a polyster resin matrix. Static mechanical properties of 
SMC are reasonably well characterized (e. g., Heimbuch and Sanders, 1978 and Jutte, 1978), 
but scarce results have been reported on dynamic response properties of such material. 
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Figure 15.22. Storage and loss moduli versus frequency for 0/90 crossply laminate. 
Theoretical values found from measured ply properties show better agreement with 
measured crossply values than do those shown in Fig. 10.21. "Reprinted from J. 
Composite Materials 10, Gibson, R. F. and Plunkett, R., Dynamic mechanical behaviour 
of fibre-reinforced composites: Measurement and analysis, 325-41, 1976, with kind 
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Gibson and Yau (1980) presented measurements of complex moduli of SMC-25 
(25% by weight random E-glass fibers in a polyster matrix), of SMC-R65 ( 65% by weight 
random E-glass fibers in a polyster matrix), and ofXM-3 (25% by weight random E-glass 
fibers, 50% by weight continuous E-glass fibers@± 7.5° in a polyster matrix). Comparison 
of the obtained results were compared with previously obtained data on continuous fiber 
composites. The latter are unidirectional and crossply configurations of 3M Scotchply 
(approximately 50% by volume continuous aligned E-glass fibers in an epoxy matrix). In the 
referred-to paper, Gibson and Yau (1980) have shown that the use of complex modulus to 
describe the small-amplitude dynamic behaviour of chopped fiber and of continuous fiber 
reinforced plastics is appropriate since both stiffuess and damping are independent of 
amplitude. 

The approach taken by Gibson and Yau (1980) is to see ifthe complex moduli fall 
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within the so-called "elementary bounds". For this purpose, bounds on the elastic moduli of 
composite materials have been derived using a variety of methods. Paul ( 1960), for instance, 
used the principles of minimum potential energy and minimum complementary energy to show 
that the bounds on the Young's modulus of a macroscopically isotropic, two-phase composite 
with an arbitrary phase geometry are 

(15.12) 

where the upper bound is theoretically valid only if the two Poisson's ratios, i.e., of the fibre 
and matrix are equal. On the other hand, Hill (1964) showed that, when the transverse strain 
mismatch due to differences in Poisson's ratios is accounted for, the upper bound may be 

taken as 

(15.13) 

which reduces to the same equation (15.12) when the Poisson's ratios of the fibre and matrix 
are equal. 

Due to the random orientation of fibers in SMC, the properties should be nearly 
isotropic, and the assumptions leading to (I 5.12) may be applicable. Wolf and Carne (I 979), 
for instance, showed that the anisotropy of SMC stiffuess is less than 10%. In a transversely 
isotropic continuous fibre composite, these bounds may be applied to the transverse modulus 
(i.e., perpendicular to the fibres). 

To establish the bounds on the complex viscoelastic moduli, Gibson and Yau ( 1980) 
used the Correspondence Principle, following Hashin (1970 a&b), and replaced the elastic 
moduli in (15.12) with the corresponding complex moduli. The resulting bounds on the 
storage modulus of the composite are the same as those in (15.12). That is. 

E'(+) = R [E*V +E*V ] 
c e f f m m (15.14) 

and 

E'(-) = Re 
c 

(15.15) 
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Meantime, the corresponding "bounds' on the loss moduli of the composite are 

E"(+) = Im 
c 

E "< -l = lm [ E * V + E * V ] 
c f f m m 

as it can be shown that 

lm ----

E* 
m 

(15.16) 

(15.17) 

(15.18) 

The use of equations (15.14)- (15.17) requires knowledge of the complex moduli and 
volume fractions of the fibres and the matrix resin. As a first approximation, the fibres are 
assumed to be elastic, i.e. E;' = 0; since data on glass fiber damping might not be easily 
accessible. 

The measured complex moduli and the estimated bounds on the moduli of the SMC 
materials are shown in Figures 15.23 to 15.25. The validity of the data here is supported by 
the overlap between the data for different modes of vibration and between specimens. Static 
modulus data provide an additional check on the storage modulus. As shown in the figures, 
while the measured storage moduli generally fall within the bounds, the loss moduli are 
significantly greater than the upper bounds for SMC-R25 and SMC-R65. The measured loss 
moduli for XMC-3 fall on both sides of the upper bound, but most of the data fall above the 
bound. As mentioned earlier, the bounds are based on the assumption that no dissipation 
occurs in glass fibres. Comparing the results of Fig. 15.23 with those of Fig. 15.24, one sees 
that the relative separation between measured loss moduli and the corresponding upper bound 
is greater for SMC-R65 than for SMC-R25. Since the SMC-R65 composite has more fibres 
per unit volume than the SMC-R25, it follows that the total matrix-fibre interfacial area of 
SMC-R65 would be greater than that of the SMC-R25. Thus, any dissipation mechanism 
operating at the interface would have more effect on the damping of SMC-R65 than on that 
of SMC-R25. Figure 10.25 shows that the storage modulus for the XMC-3 longitudinal 
specimens fall near the upper bounds, while the storage modulus for the XMC-transverse 
specimen falls near the lower bound. The loss moduli for both specimens fall near the upper 
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bound, however, it is also likely that additional dissipation occurs ~y virtue of fibre 
discontinuity and resulting shear stress concentrations at the fibre ends. 
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Figure 15.23. Measured complex moduli and estimated bounds for SMC-R25, _Upper 
Bound, · · · Lower Bound, o Specimen A, • Specimen B. "Reprinted from J. Composite 
Materials 14, Gibson, R F. and Yau, A, Complex moduli of chopped and continuous fibre
composites: Comparison of measurements with estimated bounds, 155-67, 1980, with kind 
permission from Technomic Publishing Co. Inc., Lancaster, PA". 
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Figures 15.26 and 15.27 present the corresponding data for the case of a continuous 
fibre-composite 3M Scotchply. There is less scatter in the loss modulus data here than in 

Figures 15.23 to 15.25, because only first and second modes were used (the data in Figures 
15.23 to 15.25 were obtained by testing up through the fifth mode, and it was postulated by 

the authors that the proximity of strain gages to nodal points in the higher modes produced 
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more errors in the data). The storage and loss moduli generally fall within the bounds for all 
three configurations (longitudinal, transverse, and cross ply). 
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Figure 15.24. Measured complex moduli and estimated bounds for SMC-R65, _Upper 
Bound, - - - Lower Bound, o Specimen A, • Specimen B. "Reprinted from J. 
Composite Materials 14, Gibson, R. F. and Yau, A., Complex moduli of chopped and 
continuous fibre-composites: Comparison of measurements with estimated bounds, 15 5-67, 
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Along with the continuous competing requirements for improving the weight, 
interdisciplinary performance, and reliability of composite components, the development of 
real time non-destructive "health-monitoring" techniques based on the global dynamic 
characteristics of the composite structure is receiving growing attention (e.g., Lee et a!., 
1987, Tracy and Pardoen, 1989, Grady and Meyn, 1989, Raju eta!., 1992). In this realm, one 
approach is concerned with developing the capability to detect delamination by monitoring 
changes in the dynamic response characteristics. 
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327 

MPa 

•u 
w 

Although significant work has been reported in the general area of delamination 
prediction and growth, limited research efforts have been reported on structural dynamic 
characteristics. Tracy and Pardoen (1989), and Hanagud eta!. (1992), for instance, have 
considered the effects of a single delamination on the natural frequencies and modes by 
applying the classical beam theory on a delaminated beam offour longitudinal distinct regions. 
Saravanos (1993) considered the development of a discrete laminate mechanical approach for 
predicting the effects of delamination on the dynamic characteristics of composite laminates 
including damping. An analytical procedure was introduced for the prediction of natural 
frequencies, modes and modal damping in composite beams with an interlaminar 
delamination. The predicted effects of delamination vary based on crack size, laminate 
configuration, and mode order. The results also indicate that delamination effects could be 
more profound in angle-ply laminates due to resultant changes in the extension-flexure and 
flexure-twisting stiffness/damping coupling in the delaminated sections. 
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Figure 15.26. Measured storage moduli and estimated bounds for 3M Scotchply. 
"Reprinted from J. Composite Materials 14, Gibson, R F. and Yau, A., Complex moduli 
of chopped and continuous fibre-composites: Comparison of measurements with estimated 
bounds, 155-67, 1980, with kind permission from Technomic Publishing Co. Inc., 
Lancaster, PA". 

1000 

The developed method was applied to predict the dynamic characteristics of cantilever 
composite beams with a single delamination. Predicted natural frequencies were correlated 
with reported measured data of a [0/90)28 T300/934 graphite/epoxy cantilever beam and a 
[90/45/-45/0)28 simply-supported AS4/3501-6 graphite/epoxy beam. In all experimental 
results, the delamination was artificially induced during the lay-up of the composite using a 
teflon tape. Subsequently the effects of a central delamination on the first three modal 
frequencies, damping and shapes of cantilever beams were investigated. The composite 
material in this case was either 0.60 FVR T300/934 epoxy or 0.50 FVR HM-S 
Graphite/Epoxy. Three types of beam configurations were considered with ply thickness of 
0.127 mm (0.005 in) each: cross-ply [0/90)28, [0/90/45/-45], and [ 45/-45/90/0]. laminates. 
All beams were assumed to have a delamination at their mid-plane. The delamination was also 
assumed to be symmetrically located about the centre of the beam (50% span). 
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Figure 15.27. Measured loss moduli and estimated bounds for 3M Scotchply. "Reprinted 
from J. Composite Materials 14, Gibson, R. F. and Yau, A., Complex moduli of chopped 
and continuous fibre-composites: Comparison of measurements with estimated bounds, 
155-67, 1980, with kind permission from Technomic Publishing Co. Inc., Lancaster, PA". 

[0/90]28 Beam: 
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The predicted effects of delamination crack length on the modal characteristics of the [0/90h 
beam are shown in Fig. 15.28. The effects of crack length on the first three bending mode 
shapes of the beam are shown in Fig. 15.29. Local opening modes were also observed for 
large delamination lengths, but they are not presented herein (Saravanos, 1993). As a general 
trend, the delamination reduced the natural frequency and increased the modal damping of the 
structure, even with friction effects being neglected. The effects of delamination were more 
obvious in the characteristics and shapes of the higher modes. The delamination did not 
change significantly the modal frequency, damping, and shape of the fundamental mode. Small 
delaminations (less than 20%) produced little change in most modal characteristics. The 
damping of the third mode appears to be a promising "early" damage indicator for this type 
of laminate (Saravanos, 1993). As presented in the same article (Saravanos, 1993), the 
presence of a central delamination drastically reduces the flexural rigidity of the delaminated 
portion, but on the other hand is increasing both strain energy and laminate damping in the 
delaminated sub-laminates. This explains the reductions in modal frequencies and the increase 
in modal damping. 
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Figure 15.28. Effect of delamination size on modal frequencies and damping of the 
[0/90h., beam. "Reprinted from NCA-Vol. 16/AMD-Vol. 172, Saravanos, D. A., Mechanics 
for the effects of delamination on the dynamic characteristics of composite laminates, 
ASME 1993, pp. 11-21, with kind permission from ASME International, New York, NY''. 

[0/90/45/-45]. Beam: 
A more general laminate configuration was investigated by Saravanos (1993) in this case. 
The modal characteristics of the beam are shown in Table 15.1 (pristine beam) and in Fig. 
15.3 0 for various crack length. The effects of crack length on the first three mode shapes of 
the beam are shown in Fig. 15 .31. Most of the trends described in the previous case are also 
observed here, although they are more profound than in the previous case. The delamination 
effects are more observable in the higher modes and the characteristics of the fundamental 
mode provide minimal damage indication. 
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TABLE 15 .1. Modal frequencies and damping of pristine cantilever beams (Saravanos, 
1993) 

Lamination [0/901:. {0/90/45/-45 Js { 45/-45/90/0 Js 

Modal SDCs, % 

Mode 1 0.95 0.572 1.964 
Mode2 0.95 0.572 1.964 
Mode3 0.95 0.572 1.964 

Natural Frequencies, Hz 

Mode 1 78.6 87.3 39.8 
Mode2 492.6 547.2 249.5 
Mode3 1379.2 1532.3 698.4 

[45/-45/90/0], Beam: 

331 

The natural frequencies and the corresponding modal damping and mode shapes of the beam 
are shown in Table 15.1 and in Figures 15.32 and 15.33, respectively for various crack sizes. 

Contrary to the former cases, the effect of delamination on the mode shapes and natural 
frequencies is modest. The damping is more sensitive at the presence of the delamination, but 
depending on the mode order, the damping may either increase or decrease. The effects of 
various thermal treatments on the dynamic properties of PEEK (Polyether ether ketone) and 
carbon fibre reinforced PEEK (APC2) have been studied by Folkes, Kalay and Ankara 
(1993). PEEK is one of a new generation of engineering polymers having good high 
temperature properties. As such, it has received much attention as a likely contender in 
replacing more traditional thermosetting resins. Continuous carbon fibre reinforced PEEK has 
also been developed and can offer favourable physical properties. This type of composite is 
referred to as "aromatic polymer composite (APC2). In addition, these materials have 
comparatively short processing cycles by virtue of their thermoplastic nature. 

A Rheometries RSA2 Solids Analyzer was used by Folkes et al. (1993) to record the 
dynamic mechanical spectra of the various specimens. Undamped, three-point bend testing 
at a frequency of62.8 rad s·' was used. The specimen dimensions were approximately 1mm 
x 6.5 mm x 48 mm and 3.25 mm x 6.5 mm x 48 mm for APC2 and PEEK samples, 
respectively. A strain of 0.01 was applied to the samples, and the heating rate was 
2.5°C min·'-
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from NCA-Vol. 16/AMD-Vol. 172, Saravanos, D. A., Mechanics for the effects of 

delamination on the dynamic characteristics of composite laminates, ASME 1993, pp. 11-

21, with kind permission from ASME International, New York, NY". 
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Figure 15.30. Effect of delamination size on modal frequencies and damping of the 

[0/90/45/-45], beam. "Reprinted from NCA-Vol. 16/AMD-Vol. 172, Saravanos, D. A., 

Mechanics for the effects of delamination on the dynamic characteristics of composite 

laminates, ASME 1993, pp. 11-21, with kind permission from ASME International, New 

York, NY". 



www.manaraa.com

1.2.--------------------, 
1.0 

~ 0.8 
E 0.6 

~ 0.4 

Delamination 
0% --
20% 
40% ------
60% ---

0.2 

0~--~~--~----~--~~--~ 
0 0.6 0.8 1 

~ i~l~-"·:·_:-;···-·---~--.. -- ~ode2 i -0.~ - -c-~- -- ---------

-1.0 --. __ 

-1.5 '---:"-:----:-'----'-:,...---,-'-,...----1 
0 0.2 0.4 0.6 0.8 1 

1.5,.-----------------, 

1.0 Mode 3 

~ 0.5 
E i 0~~-----~~----~~~ 
;: -0.5 

-1.0 

-1.51----+---+----+----+--~ 
0 0.2 0.4 0.6 0.8 

Normalized length (x/1) 

Figure 15.31. Effect of delamination on the mode shapes of the [0/90/45/-45), beam. 
"Reprinted from NCA-Vol. 16/AMD-Vol. 172, Saravanos, D. A., Mechanics for the effects 
of delamination on the dynamic characteristics of composite laminates, ASME 1993, pp. 
11-21, with kind permission from ASME International, New York, NY''. 
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Figure 15.3 2. Effect of delamination size on modal frequencies and damping of the 
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Mechanics for the effects of delamination on the dynamic characteristics of composite 
laminates, ASME 1993, pp. 11-21, with kind permission from ASME International, 
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Rotem (1993) studied the fatigue behaviour of a [0/± 45/90) graphite/epoxy laminate 
under reverse loading at different frequencies. It was found that for this laminate, the 
interlaminar stresses at the free edges dominate the fatigue life by introducing interlaminar 
cracks which cause the laminate to collapse under the compression portion of the load cycle. 
This failure occurred at all frequencies that were studied, namely, 0.1, 1, 2.8, 10 and 28Hz. 
It was reported by Rotem (1993) that the fatigue life decreases considerably as the frequency 
rises from 2.8 Hz to 10Hz, while the changes as frequency increases from 0.1 Hz to 2.8 Hz 
and from 10 Hz to 28 Hz were more moderate. It was also found that the axial modulus 
hardly changes in this frequency range and therefore, as was advanced by Rotem (1993), it 
cannot be the cause of the fatigue life decrease. It was suggested, however, that the reason 
for the reduction offatigue life could be due the heat generated at the free edge location by 
the hysteresis of the stresses amplitude. More heat is generated on the higher frequency 
loading which cause higher temperature at these locations. The higher temperature reduces 
the local strength and causes earlier crack initiation which results in shorter fatigue life. 
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Figure 15.33. Effect of delamination on the mode shapes of the [45/-45/90/0], beam. 
"Reprinted from NCA-Vol. 16/AMD-Vol. 172, Saravanos, D. A., Mechanics for the effects 
of delamination on the dynamic characteristics of composite laminates, ASME 1993, pp. 
11-2 J, with kind permission from ASME International, New York, NY''. 
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Figure 15.34. The dynamic mechanical spectrum of PEEK. "Reprinted from Composite 
Science and Technology 46, Folkes, M. J., Kalay, G. and Ankara, A., The effect of heat 
treatment on the properties of PEEK and APC2, 77-83, 1993, with kind permission from 
Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK". 
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c , ....., 

The results of the fatigue tests of the isotropic laminate for two loading frequencies 
are shown in Fig. 15.36, as well as the S-N curves fitted to these data (Rotem, 1993). The fit 
was done by the least squares regression technique and it can be seen that the fatigue lifes at 
the higher frequency (10Hz) are much shorter than those at the lower frequency (2.8 Hz). In 
effect, the S-N curve for the 10Hz tests indicates a fatigue life of about one tenth ofthe 
fatigue life of the 2.8 Hz S-N curve. Since fatigue loading was tension-compression with zero 
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mean, there was no creep effect and the entire degradation process took place within the 
interlaminar zones. 

Adding the test results for the other frequencies shows a very interesting phenomenon, 
as shown in Fig. 15.37. The lower frequency results tend to crowd at the 2.8 Hz location 
while the higher frequency results tend to crowd at the 10 Hz location. It seems that for this 
material, therefore, the strongest effect of frequency is between 2.8 Hz and 10Hz. It is clear 
from the results on Fig. 10.37 that the frequency effect is not linear. 

There is a good correlation between the failure processes and the stifthess behaviour. 
Figure 15.38 is a plot of the modulus change for fatigue loading frequency of 10Hz. The 
failure process showed the beginning of inter-laminar crack initiation at about 99% ofthe 
fatigue life, meantime the accelerated modulus degradation starts at about 90% of the fatigue 
life as seen in the two examples on Figure 15.38. On the other specimens, Fig. 15.39, for 
which the loading frequency was 1 Hz, the accelerated modulus degradation also starts at 
about 96% of the fatigue life, for different load levels which gave different fatigue life. 
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Figure 15.35. The dynamic mechanical spectrum of APC2. "Reprinted from Composite 
Science and Technology 46, Folkes, M. J., Kalay, G. and Ankara, A., The effect of heat 
treatment on the properties of PEEK and APC2, 77-83, 1993, with kind permission from 
Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK". 
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Figure 15.36. Fatigue results of two loading frequencies at R=- 1. "Reprinted from 
Composite Science and Technology 46, Rotem, A., Load frequency effect on the fatigue 
strength of isotropic laminates, 129-38, 1993, with kind permission from Elsevier Science 
Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK". 
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MODULUS CHANGE OF ISOTROPIC LAMINATE 
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Figure 15.38. Modulus change under fatigue loading of 10Hz and R = - I. "Reprinted 
from Composite Science and Technology 46, Rotem, A., Load frequency effect on the 
fatigue strength of isotropic laminates, 129-38, 1993, with kind permission from Elsevier 
Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK". 
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Figure 15.39. Modulus change under fatigue loading of 1Hz and R =-I. "Reprinted 
from Composite Science and Technology 46, Rotem, A., Load frequency effect on the 
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15.5. The Trade-off between Damping and Stiffness in the Design of Discontinuous 
Fibre-Reinforced Composites 

It is well-known that lightweight fibre-reinforced polymer composite materials have higher 
specific strength and stifthess when compared with conventional structural materials such as 
metals. Much effort has been devoted to the improvement and optimization of these 
properties in various composite structures. Good vibration damping properties are also 
particularly important for composite structures when they are used under dynamic loading, 
such as in aerospace structures and rotor blades. Due in part to the extensive accumulated 
experience with conventional structural materials which in general have poor internal 
damping, the potential for the improvement and optimization of damping in fibre- reinforced 
composites has not been yet fully realized. Meanwhile, the full use of discontinuous fibre
reinforcement has not been yet fulfilled in composite materials research. This is due, on the 
other hand, to the direct accomplishment of higher specific strength and stiffuess in the more 
familiar continuous fibre composites. 

In the conventional damping theory, the loss tangent tan a, often referred to as the 
damping factor, is assumed to vary comparatively little with frequency for a large class of 
polymers, particularly at temperatures near the polymer glass-transition temperature (e.g., 
Nashif et a!., 1965). Thus, a large number of researchers, by following this assumption, 
considered in their models that the damping factor to be constant. However, in the case of 
fibre-reinforced composites, and, in particular, discontinuous fibre composites, the damping 
factor is a frequency dependant, as it relates strongly with the particulars of the 
microstructure, e.g., fibre-aspect-ratio, fibre volume faction and fibre off-axis angle; e.g., 
Gibson and Yau (1980), Gibson eta/. (1982), Sun et al. (1985), and Suarez eta/. (1986). 

The damping properties of continuous fibre composites have been studied by a number 
of researchers; e.g., Bert and Clary (1974) and Bert (1980). There are relatively few research 
publications on the damping of discontinuous fibre composites. However, studies reported 
by, for instance, McLean and Read (1975) and Gibson et al.(1982) indicate that vibration 
damping offibre-reinforced composites, of polymeric matrix, may be significantly improved, 
and possibly can be readily optimized by using, as a reinforcement, discontinuous fibres 
rather than continuous ones. 

A possible explanation of the above mentioned advantages concerning the damping 
of discontinuous fibre composites is the presence of shear stress concentration at the fibre
segment ends, and, thus, the shear loading transfer mechanism that occurs between the 
reinforcement and the matrix material. In this context, it is often argued in the literature that 
shear deformation is primarily responsible for the vibrational energy dissipation in viscoelastic 
materials such as polymers. An approximate stress distribution along a short fibre embedded 
in a continuous matrix was reported, for instance, by Cox (1952). 

The research work of Gibson and Yau (1980) and Gibson eta/. (1982) indicates that 
by varying the fibre-aspect-ratio and fibre orientation, highest damping and maximum stiffuess 
could be achieved separately. This observation implies that the optimum conditions (in terms 
of microstructural parameters such as fibre-aspect-ratio and orientation) for damping may not 
be necessarily the same for stiffuess. Consequently, it is important to study the influence of 
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the various governing microstructural parameters as pertaining to both damping and stiffness. 

The optimization, in terms of the microstructure, of this trade-off between damping and 

stiffness is the main intention of this section. 
It is obvious that the most ideal situation for designing a discontinuous fibre

reinforced polymer composite structure is to optimize the damping and stiffness 

simultaneously with respect to the microstructure controlling parameters. In this context, the 

general procedure of the "Force-Balance Approach", e.g., Sun eta/. (1985), is used below 

in this section to formulate an analytical model pertaining to the optimization of the damping 

and stiffness of a class of discontinuous fibre-reinforced composite materials. In this context, 

a multi-objective optimization functional is established to optimize these two properties 

simultaneously. In this context, a particular application, i.e., concerning a discontinuous E

glasslepoxy composite system, is dealt with in this section (see Feng, 1999, and Haddad and 

Feng, 1999). 

15.5 .1. INFLUENCE OF SELECTED MICROSTRUCTURAL PARAMETERS 

There appear to be two primary sources of damping in fibre-reinforced composites: 

(i) the extent of the viscousc nature of the bulk matrix, and 

(ii) the friction mechanism at the interface as caused by the relative 
motion between the matrix and the fibre. 

Both of these effects may prove to be particularly significant in polymeric base 

composites that are reinforced with discontinuous fibres, whereas high shear stresses are often 

developed at the fibre-matrix interface. When a short-fibre composite is subjected to a cyclic 

loading, the matrix at regions surrounding the fibre-segment and adjacent to its ends 

undergoes high cyclic shear strains, thus, producing significant viscous energy loss. The shear 

stress concentration at these regions may also induce partial debonding at the fibre/matrix 

interface that might eventually result in a slip between the fibre and the matrix and, thus, in 

accompanying frictional losses. Such a fibre/matrix debonding would, however, affect 

adversely the stiffness of the composite and, by consequence, its ultimate strength. It is, 

however, often argued in the literature that it is often desirable to have a strong interfacial 

bond so that slip at the interface could be avoided. If this is accomplished, then, the most 

viable source of possible enhanced dissipation would appear to be the occurring shear 

deformation in the matrix as a result ofthe shear stress concentration adjacent to the fibre 

ends. Based on the particular mechanism of stress transfer between the fibre and the matrix, 

it is obvious that there are several microstructural parameters (e.g. fibre-aspect-ratio, fibre 

volume fraction, fibre/matrix modulus ratio, etc.) that could influence the shear stress 

distribution surrounding the fibre-segment. The situation becomes further complicated when 

the interaction between neighboring fibre-segments, in the composite laminate, is taken into 

account. 
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Force-Balance Approach 
As mentioned earlier, the ''Force-Balance Approach" is used below in this section to predict 
the damping and stiflhess for this class of materials. The "Force-Balance Approach" is often 
regarded as a combination of elastic mechanics-of-materials analysis, which could reasonably 
predict the stress transfer at the fibre/matrix interface, in conjunction with the well-known 
elastic-viscoelastic correspondence principle oflinear viscoelasticity; e.g., Hashin (1970) and 
Haddad (1995). 

The basic assumptions for the ''Force Balance Approach" are: 
- A round fibre is surrounded by a cylindrical matrix under the effect of an 
extensional load. This is illustrated in Figure 15.40 below. 
- Both the fibre and matrix are isotropic. 
-The mechanical response of the matrix is linear viscoelastic. 
- The fibre contributes, to a certain extent, to the overall energy dissipation in 
the composite specimen. 
- The bonding between the fibre and the matrix is assumed to be perfect. 
Further, the fibre/matrix interface is assumed to have the same viscoelastic 
properties of the bulk matrix. 
- The load transfer between the matrix and the fibre depends upon the 
difference between the actual displacement at a point on the interface and the 
displacement that would exist if the fibre were absent. 

R 

------- --- ..... _ ------ --- ..... _ 
Matrix 

u 
(a) (b) 

Figure 1 5.40. Representative volume element (a) Aligned case. (b) Off-axis case. (Adapted 
after Sun, C. T., Gibson, R F. and Chaturvedi, S. K. (1985), Journal of Materials Science 
20, 2575-85, with kind permission from Kluwer academic publishers, Dordrecht). 
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In the force-balance approach, the expression for the elastic stiffness of a 
discontinuous-fibre composite is derived from the average fibre stress as based upon using 
Cox's analytical model concerning fibre stress distribution (Cox, 1952}. Subsequently, the 
elastic-viscoelastic correspondence principle is employed to obtain the expression for the 
complex modulus of the assumed linear viscoelastic composite laminate. This involves the 
replacement ofthe static elastic moduli of the fibre, matrix and composite in the expressions 
resulting from the linear elastic analysis, with the corresponding viscoelastic moduli. In the 
case of sinusoidal loading, the expression for the arrived at complex modulus would involve 
both the storage and loss moduli. 

For a typical representative volume element, Figure 15.40, the expression of the 
longitudinal modulus E" of the composite along the loading axis may be expressed (see 
Agarwal and Broutman,1980 and Feng, 1999) by: 

1 cos4 e sin4 e ( 1 ) . 2 e 2 e -=--+--+ -- sm cos 
Ex EL ET GLT 

(15.19) 

where Eu Er and GLr are the longitudinal modulus, transverse modulus, and in-plane shear 
modulus, respectively, and can be expressed in term ofboth the fibre and matrix material 
parameters, i. e., E1 E, G1 Gm, etc, and the fibre volume fraction Vfi by using, for instance, 
the rule-of-mixtures if one deals with a continuous fibre composite. For a short fibre 
composite, however, one cannot use the rule-of mixtures to represent the longitudinal 
modulus EL. For the latter case, i.e., a short fibre composites, the longitudinal modulus would 
depend also on the fibre aspect ratio, 1/d. Based upon the shear-lag model (Cox, 1952}, EL 
may be expressed for the case of short fibre composite by (Feng, 1999) 

E = E ( 1 - tanh (Y.J2) ) V + E ( 1 - V } (15.20) 
L f (X/2) f m f 

where, 

2= 4 Gm (Ud)2 
X Er ln(2R/d) 

(15.21) 

The ratio Rid, as illustrated in Figure 15.40, is related to the fibre volume fraction Vfi for the 
particular packing array under consideration. For instance, 

For a square array: ( R)2 1t 

d = 16Vr (15.22) 

For a hexagonal array: ( R) = 1t 
d 8(3Vr)112 

(15.23) 
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Based upon the work of Gibson, et a/. (1982), the packing geometry has an 
insignificant effect on the magnitude of damping. Thus, we adopt, in the following analysis, 
expression (15.22) corresponding to the square packing array. Combining equations (15.21) 
and (15.22), it follows that 

(15.24) 

Equation (15.24) above shows that the parameter x; is essentially a function of the fibre 
matrix stiffuess ratio E1 1Gm, fibre-aspect-ratio Pld, and the fibre volume fraction J7.r 

The transverse modulus Er and the transverse in-plane shear modulus Gw of the 
short fibre composite, are almost independent of fibre-aspect-ratio PI d. In this context, Feng 
( 1999) used the following prediction equations adopted by Halpin-Tsai in their model 
concerning continuous fibre composites (e.g., Agarwal eta/., 1980), 

(15.25) 

(15.26) 

where the coefficients 11 1 and 112 of above equations can be expressed, respectively, as 

(15.27) 

(15.28) 

The Poisson's ratio vLT of the short fibre composite, which is assumed to be insensitive to 
fibre length, may be expressed, using the 'rule-of-mixture' form, as 

(15.29) 

According to the previous assumptions, both the fibre and matrix are considered to 
behave in a linear viscoelastic manner. This permits us to use the elastic-viscoelastic 
correspondence principle (e.g., Haddad, 1995) in order to redefine the basic material 
properties as, 
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Ex* =E>iE; 

Er* =E;+iE; 

E~ =E~ +iE~ 
G~ =G~ +iG~ 

(15.30) 

where, as introduced earlier, the over-prime designates the storage modulus and the double 
over-prime designates the loss modulus. Meantime, the damping (or loss) factor is defined as 
the ratio between the loss modulus to the storage modulus, i.e., 

flc = E; IE~ 
Tlr = E; IE; 

Tlm = E~/E~ 
Tl0m = G~/G~ 

(15.31) 

Upon using equation (15.30), equation (15.20) and equations (15.24) to (15.28) may be 
written, respectively, as 

(15.32) 

(G~ + i G~) (l/d)2 

(15.33) 

(15.34) 

(15.35) 
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(15.36) 

(15.37) 

Substituting E~ ,E; and G~T from equations (I5.32), (13.4) and (15.35) for Er_, ET and Gm 
respectively, and Ex* for Ex into equation (15.19), one obtains 

I - cos4 8 sin4 e ( I 2 VLT l . 2 e 2 e ------+--+ ---- sm cos 
E> i E~ E~ E; G~T E~ 

(15.38) 

This equation can be used to determine E~ and E~ for the composite by separating its real 
and imaginary parts. 

Examining equation (I5.32), one finds that E~ is an exponential function of x· which 
depends upon the complex stiffuess ratio G~/Er*. 

Since the loss moduli are generally small, one may neglect the higher order terms of loss 
factors such as ~i and ~Om ~r· Following this approach, and by careful manipulation, one 
can obtain the following expression from equation (I5.33) as, 

---- I+-1(~ -~) x· _ x [ 1 . ] 
2 2 2 Om f 

(15.39) 

Then, one may use a Taylor's series approximation and silnilarly neglect any resulting higher 
order terms in the loss factors to obtain 

tanh X:.= tanh X+ iX _(~_Gm_-_~_r_) 
2 2 4 cosh2 X (15.40) 

2 



www.manaraa.com

346 

Finally, by combining equations (15.32 to 15.40), one determines analytical representations 
of E~, E~ and llx as dealt with by Feng (1999) and Haddad and Feng (1999). 

The analytical expressions reached out by Feng (1999) are represented here symbolically as, 

(15.41) 

(15.42) 

(15.43) 

In the equation (15.43), llx is defined as the ratio of E~l E~ and will not have the same 
changing pattern as Ex. Therefore, two dependent variables, the non-dimensional ratio 
Ex' IE' and the non-dimensional ratio 11 I 11 , are used in the following numerical m x m , 

presentation. In general, from the expressions forEx and fJx, e.g., equations (15.41) and 
(15.43), we have eleven variables, namely Er,Em, e, Vf, Gm, llp 11m' T'JGm, Vr, vm and the fibre
aspect-ratio Q/d. An optimization that would include all possible variations of these eleven 
variables are almost impossible and unnecessary. Therefore, in the following optimization 
analysis, we choose, as a particular example, the matrix material to be Scotchply epoxy and 
the fibre-reinforcement to be ofE-glass in the dealt with composite layer. The corresponding 
material properties of these two selected materials are presented in Table 15.2. Consequently, 
we narrow down the optimization variables to three, namely, e, vf and eld. 

For a large class of composite materials used in aerospace and automotive industries, 
the fibre volume fraction varies within the range of 50 to 70%. Meanwhile, the observation 
made by Cox (1952) shows that, for short fibre reinforced composites, the reduction of the 
effective longitudinal modulus due to the load transfer from fibre to fibre is considered 
significant only for fibre aspect ratios, eld, less than 100 Therefore, one could set that the fibre 
volume fraction to range from 50% to 70% and the fibre aspect ratio to range from I to 100. 

Figures 15.41 to 15.45 are obtained by setting, respectively, the fibre of-axis an~le ~ 
as oo, 40°, 60°, 80o and 90°, and plotting the non-dimensional ratios T'Jlllm and EJEm 
against the fibre volume fraction Vr and the fibre aspect ratio eld. In these figures, it is clear 
that with the increase of fibre off-axis angle e, the values of the non-dimensional ratio lllllm 
are increasing and those for E~/E~ are decreasing. When the fibre off-axis angle reaches a 
value between 40° to 60°, both curves pertaining to 11,/11m and EjE~ change their directions, 
which demonstrate that for a fibre off-axis angle e within the range of 40° to 60°, both the 
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ratios 'lll'llm andEjE~ reach their extreme values (maximum and minimum, respectively) 
almost simultaneously. 

TABLE 15.2 Selected material properties of Scotchply 1002 matrix epoxy and E-glass fibres at room 
temperature (Adapted after Gibson and Plunkett 1976). 

Material Properties Expoxy E-glass 

Young's modulus, GPa 3.79 72.4 

Shear modulus, GPa 1.38 30.3 

Damping factor O.Q15 0.0014 

Shear damping factor O.Q18 0.0014 

Poisson's ratio, u 0.36 0.2 

Specific Gravity, g 1.23 2.54 

Figures 15.46 to 15.50, which are plotted by setting the fibre-aspect-ratio Q/d at 5, 20, 
40, 80 and 100, respectively, present the non-dimensional ratios TJJTJm andE~/E~ against the 
fibre volume fraction Vr and the fibre off-axis angle e. One could note that the value 'lli'llm 
decreases monotonously as the fibre-aspect-ratio Ud increases and for Ud>15, the rate of 
decrease in the value of'll)TJm slows down until the fibre-aspect-ratio Ud reaches 20, wh~reb;v 
the value ofT))TJm maintains a constant value afterwards. The non-dimensional ratio Ex/Em 
also increases sharply until the fibre-aspect-ratio Ud reaches a value of about 20. With the 
fibre-aspect-ratio ranging from 20 to 60, the non-dimensional ratioE~/E~ increases slowly 
with the increase of the fibre-aspect-ratio Q/d and it appears to have a constant value from 
Ud=60 upwards. 

By setting the fibre volume fraction Vr at 50%, 60% and 70%, the non-dimensional 
ratios TJJTJm andEjE~ versus the fibre aspect ratio Q/d and the fibre off-axis angle e could 
be plotted as shown in Figures 15.51 to 15.53. In these figures, one could identity that with 
the increase of the fibre volume fraction V f• both the non-dimensional ratios 'lli'llm and 
EjE~ change almost linearly, with the values of 'lll'llm are monotonously decreasing and 
those for E~/E~ are monotonously increasing. 

It is apparent from the above mentioned results that among the three considered 
independent variables, the fibre off-axis angle e has the most significant influence on the 
damping and stiffuess offibre reinforced composites, e.g., Sun et al. {1985). The numerical 
results obtained appear to have good agreement with the observations made by Gibson et a/. 
(1982), Sun et al. (1985), and Suarez eta/. (1986). 
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15.5.2. OPTIMIZATION 

From the above numerical results, one can note that in order to increase the damping 
property of a discontinuous fibre reinforced composite, it is necessary to sacrifice the stifthess 
of such material. The analysis of the trade-off between damping and stifthess has recently 
gain remarkable attention from researchers and design engineers, particularly in aerospace and 
automotive industries, due to the high-volume use of fibre composite materials in such 
industries. Therefore, the simultaneous optimization of these two properties for the design 
of high performance fibre-reinforced composite structures is becoming remarkably important 
in the realm ofthe development of composite materials for applications involving both quasi
static and dynamic loading. 

In addition, as it is well recognized, one of the most important advantages of a fibre 
reinforced composite material over its metallic counterparts is its light specific weight. The 
latter property is particularly attractive to aerospace and automotive industries. Thus, it is 
necessary to include this property in the dealt with optimization problem. Thus, three 
objective functions become involved in the optimization problem of interest to the present 
work, i.e., the maximization of both damping and stifthess and, on the other hand, 
minimization of the specific weight. Thus, the so-called "inverted utility function method', 
e.g., Rao (1984), appears to be suitable to deal with this multi objective optimization problem. 

The Inverted Utility Function Method 
In this method, a utility function U; (f;) is defined for each objective function as 

(15.44) 

where f; (X), the ith objective function, with a weighting factor W; (i = 1, 2, ... k), is to be 
minimized. In the process of optimization, one inverts each utility function and attempt to 
minimize or reduce the total undesirability. Thus, it follows that 

where the scalar weighting factor a; is defined by 

a. = 
I 

k 

La;= 1 

(15.45) 

The solution of the optimization problem is established by minimizing the function U; -I, as 

expressed by ( 15. 45), subject to the imposed constraints. The selection of scalar weighting 
factor a; would depend on the extent of importance of each objective function. 
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Multivariable Non-linear Optimization 
The utility functions of the dealt with objective functions are set as 

U =w [ ~) 
I I 11m (15.46) 

u = w ( E~ l 2 2 ' 
Em 

(15.47) 

u = -w [ W ) 3 3 -
Wm 

(15.48) 

where W is the specific weight for the dealt with discontinuous fibre-reinforced composite, 
which is defined in term of fibre volume fraction Vr as 

W=WrVr+Wm(l-Vr) (15.49) 

where£~ and 11x are defined, respectively, by equations (15.41) and (15.43). 
W r, W m , E~ and 11m are set corresponding to the material properties of considered £
glass/epoxy discontinuous fibre-reinforced composite as shown in Table 15.2. 

Substituting equation (15.46) to (15.48) into equation (15.45), the total undesirability 
ofthis design problem can be expressed as 

(15.50) 

In the presently dealt with optimization problem, both damping and stiffness are 
considered to be approximately of the same importance to the optimization problem in hand, 
but, each is of a more significance than the specific weight. Accordingly, one may set the 
associated-with weighting factors selectively as a1 = 0. 513, a2 = 0. 3 87, a3 = 0 .1. For the 
reasons stated early in this section, the constraints for this optimization problem may be set 
as 

o.5~vr~o.7 

1~Q/d~100 
oo ~ e ~goo 

(15.51) 
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Implementation of Non-Linear Programming 
Following the above presentation, the optimization of this design work becomes 

Minimize U -I 

Subject to o.5 ~ vr~ o.7 
I~Q/d~IOO 

oo ~ e ~ 90° 
(15.52) 

This is a typical constrained non-linear optimization problem. In order to simplifY this 
problem, one can adopt the so-called "mapping technique", often referred-to as the "variable 
transformation technique" to deal with the above parametric constraints (e.g., Rao, I984). 
By using this technique, the constrained optimization problem could be solved by a non
constrained optimization technique. 

In the mapping technique, one assumes that there is a minimization problem f{X) 
whereby X T = [ x1 , 'S, ... , x) has the parametric constraints 

(15.53) 

wherej =I, 2, 3, ... , n; i =I, 2, 3, ... , m. 

In this context, one can use the general mapping procedure (Rao, I984) as 

(15.54) 

Therefore, the objective function f{X) changes to f{X", Y), whereby yT = [YI> y2, ... , Yi] and 
x• represents all the components of one variable vector X with the exception of Xj. 
Meanwhile ifm = n, f(X", Y) becomes f{Y); see Feng (I999}. 

Accordingly, the mapping procedure can be utilized on the above mentioned parametric 
constraints, equation (15 .52), as 

8 = 90° sin2 y1 

Q/d= I +99sin2 y2 

Vr= 0.5 + 0.2 sin2 y3 

(15.55) 

where yT = [y1, y2, y3] is the mapping vector in the above procedure. Therefore, one can 
convert this constrained non-linear optimization problem U -1(8,Q/d, Vr), Eqn. (I5.52), to a 
non-constrained non-linear optimization U -I ( y 1 , y 2 , y 3 ) and solve this problem by using a non-
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constrained optimization techniques for the purpose of the simplification of the analysis. 

The "Simplex Method', see Rao (1984), seems to be suitable for this non-constrained 
non-linear optimization problem with a relatively small number of variables. In the referred-to 
method, the movement of the "Simplex" of n + 1 points in an n-dimensional space towards 
an optimal point is achieved by using three operations known as "Reflection", "Contraction" 
and "Expansion" techniques (e.g., Rao, 1984). 

Following the algorithm of the "Simplex Method', one can implement (Feng, 1999) a 
numerical scheme to solve this optimization problem (see Fig. 15.54 for the pertaining 
flowchart). 

With reference to the flowchart ofFig. 15.54, one is to set first the values of a number 
of involved parameters, namely, the desired starting point, accuracy of the problem and probe 
length. Such parameters are used to construct the initial "Simplex", as well as the 
"Reflection", "Expansion" and "Contraction" coefficients. In this context, one sets the 
starting point as yT = [0, 0, 0], the accuracy of the problem as ACCUR = 0.001, the probe 
length as PLE = 0.1, the "Reflection" coefficient as A= 1.0, the "Expansion" coefficient as 
Y = 2.0, the "Contraction" coefficient as B= 0.5 (e.g., Rao, 1984). The final result is given 
out as: the optimal fibre off-axis angle e = 44.4 °' the optimal fibre volume fraction vf = 
60.605 and the fibre aspect ratio Q/d = 1.49. 
These results have good agreement with the observations made by Sun et al. (1985) that for 
small off-axis angles e (say e $ 45°), llx becomes maximum in the whisker or micro-fibre 
composites range (i.e., for very small Q /d, say Q/d s 5) and the stiffuess E~ for micro-fibre and 
whisker composites is also relatively high. Therefore, in order to achieve high stiffness E~ 
and damping TJx, micro-fibre and whisker composites appear to be the ideal candidates. 

IfYT are set as various starting points within a useful interval from [0, 0, 0] to [95, 
95, 95], with the increments 0.5 or 5.0, and the same input parameters are used as in the 
above case, one arrives at outputs as shown in Table 15.3. In this case, it is obvious that one 
obtains multiple local minima, such as, for instance, the local minimum: 0.5827. For each 
case of these local minima, the off-axis angle remains almost the same, i.e., approximately 
43.75°, and the fibre volume fraction and the fibre-aspect-ratio change in opposite directions 
and could be catalogued into two groups, i.e., (Q/d "' 1.38, vf"' 62%) and (Q/d "' 85.09, vf 
"' 54%). It is obvious that this interesting observation gives more flexibility to the design of 
high performance fibre-reinforced composites by using, for instance, fibre-reinforcement with 

either a relatively low fibre aspect ratio, i.e., Q/d "'1.38 and a relatively high fibre volume 

fraction, i.e., Vr"' 62%, or of a higher fibre aspect ratio, i.e., Q/d "' 85.09 and a lower fibre 

volume fraction, i.e., Vr "' 54%. Thus, in the presented case, one may conclude that 
concluded from the above results that, when at the small fibre off-axis angle e"' 43.75° and 
by approximately setting the fibre-aspect-ratio at Q/d"' 1.38 or Q /d"' 85.09, the corresponding 
fibre volume fraction Vr reaches about 62%, or 54%, we could get the maximum damping 

TJx, relatively high stiffnessE~ and relatively low weight W. 
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Summary of Section 15.5 
Analytical predictions which were detennined by the "Force-Balance Method'show that 
damping and stifthess are functions of fibre off-axis angle, fibre volume fraction and fibre
aspect-ratio. In order to increase the damping of the fibre-composite, it may be necessary to 
sacrifice the stiffuess, and vice versa. 

The "Inverted Utility Function Method' and "Simplex Method' were found to be suitable to 
deal with the multi objective optimisation problem with relatively small number of variables. 
The use of the "Variable Transformation Technique", Rao (1984), to convert the constrained 
non-linear optimisation problem to a non-constrained one, makes such an optimisation much 
easier to handle. 

For a given E-glass/epoxy composite material, the results of optimization of damping, 
stiffiless and specific weight show that, approximately at fibre off-axis angle e "' 4 3. 7 5o, by 
setting fibre aspect ratio~ I d"' 1.38 or~ I d"' 85.09, the corresponding fibre volume fraction 
Vr reaches 62% or 54%, and one could obtain maximum damping, relatively high stiffuess 
and relatively low specific weight for this class of materials. 

The existence of multiple local minima gives more flexibility to the design of high 
performance discontinuous fibre-reinforced composites. That is, in the presented case, for 
instance, both the micro-fibre or whisker composites (Ud "' 1.38) and the discontinuous fibre 
reinforced composites with longer fibre(~ "'d 85.09) can be selected to satisfy the above 
mentioned design criteria. 

15.6. Study Problems 

I. Comment, using an analytical proof, on the validity of the following statement: "On 
the contrary to the case of continuous fibre-composite systems, where the ratio of 
compliance to breaking strength is invariant for a given fiber material; with 
discontinuous fibre-systems, however, this ratio can be varied". 

2. Following your answer to Problem I above, clarify, with the support of a 
mathematical model the statement: "A variable ratio of the compliance to breaking 
strength would give more latitude in the design of various structural and mechanical 
components using composite materials". 

3. What is meant by the "glass transition temperature Tg" ? How one would detennine 
it for a particular polymeric composite system. Discuss the effect of reinforcement
discontinuity in a composite laminate on the pertaining value of T g· 
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TABLE 15.3. Optimization results for various starting points yr (Fen , 1999) 

Starting point Fibre off-axis Fibre aspect Fibre volume Local minima 
angle eo ratio Q/d fraction V c % 

[0, 0, 0] 44.4 1.49 60.6 0.5833 

(0.5, 0.5, 0.5] 43.9 83.6 54.2 0.5827 

(1.0, 1.0, 1.0] 43.9 66.7 54.6 0.5828 

[2.5, 2.5, 2.5] 44.1 1.46 60.8 0.5832 

[5.0, 5.0, 5.0] 43.9 97.4 54.3 0.5827 

(7.5, 7.5, 7.5] 44.3 38.2 55.2 0.583 

[10, 10, 10] 43.7 49.7 54.3 0.5829 

[15, 15, 15] 44 1.47 60.8 0.5832 

(20, 20, 20] 43.7 100 54.1 0.5827 

[25, 25, 25] 43 1.05 65 0.5837 

(30, 30, 30] 43.7 99.8 54.2 0.5827 

(35, 35, 35] 43.5 97 54 0.5827 

[40, 40, 40] 44.2 1.44 60.6 0.5832 

[45, 45, 45] 43.8 99.1 54 0.5827 

(50, 50, 50] 43.7 57.9 54.8 0.5828 

(55, 55, 55] 43.7 72.6 53.8 0.5828 

(60, 60, 60] 43.3 97.2 53.6 0.5827 

(65, 65, 65] 43.4 95.3 53.8 0.5827 

[70, 70, 70] 43.7 96.4 54.2 0.5827 

[75, 75, 75] 43.4 99.1 53.9 0.5827 

[80, 80, 80) 44.8 88 54.2 0.5827 

[85, 85, 85] 43.8 75.1 54.1 0.5827 

[90, 90, 90) 43.5 84.8 54.1 0.5827 

(95, 95, 95] 43.2 89.4 53.7 0.5827 
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Figure 15.41. Non-dimensional ratios qJT], and E. 'IE.,' vs. fibre volume fraction lj and 

fibre-aspect-ratio lid. Off-axis angle 8 is set set to be 0°. Reprinted with permission from 
Feng (1999); see Haddad and Feng (1999). 
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Figure 15.42. Non-dimensional ratios 'lx / 7], and Ex 'IE.,' vs. fibre volume fraction lj and 
fibre-aspect-ratio 1/d. Off-axis angle e is set set to be 40°. Reprinted with permission from 
Feng (1999); see Haddad and Feng (1999). 
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Figure 1 5.43. Non-dimensional ratios TJ, ITJ.. and E, '/Em' vs. fibre volume fraction V{ and 
fibre-aspect-ratio lid. Off-axis angle e is set set to be 60°. Reprinted with permission from 
Feng (1999); see Haddad and Feng (1999). 
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Figure 15. 44. Non-dimensional ratios 'lx I1Jm and E, '/Em' vs. fibre volume fraction V[ and 
fibre-aspect-ratio 1/d. Off-axis angle 8 is set set to be 80°. Reprinted with permission from 
Feng (1999); see Haddad and Feng (1999). 
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Figure 15.45. Non-dimensional ratios 1J.ITJ.. and E, '!Em' vs. fibre volume fraction ~ and 
fibre-aspect-ratio lid. Off-axis angle 6 is set set to be 90•. Reprinted with permission from 
Feng (1999); see Haddad and Feng (1999). 
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Figure 15.46. Non-dimensional ratios '7, / 'lm and E."/Em' vs. fibre volume fraction V1 
and off-axis angle 6. Fibre-aspect-ratio 1/d is set to be 5. Reprinted with permission from 
Feng (1999); see Haddad and Feng (1999). 
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Figure 15.47. Non-dimensional ratios 1], IIJm and E, '/Em' vs. fibre volume fraction Vj 
and off-axis angle 6. Fibre-aspect-ratio lid is set to be 20. Reprinted with permission from 
Feng ( 1999); see Haddad and Feng (1999). 
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Figure 15.48. Non-dimensional ratios 'l.i'lm and E, '/Em' vs. fibre volume fraction l'f 
and off-axis angle 6. Fibre-aspect-ratio 1/d is set to be 40. Reprinted with permission from 
Feng (1999); see Haddad and Feng (1999). 
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Figure 15.49. Non-dimensional ratios TJJ TJm and E, '/Em' vs. fibre volume fraction V1 
and off-axis angle 8. Fibre-aspect-ratio 1/d is set to be 80. Reprinted with permission from 
Feng (1999); see Haddad and Feng (1999). 
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Figure 15.50. Non-dimensional ratios TJ. I TJm and E.'!Em' vs. fibre volume fraction V, 
and off-axis angle 8. Fibre-aspect-ratio lid is set to be 100. Reprinted with permission 
from Feng (1999); see Haddad and Feng (1999). 
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Figure 15.51 . Non-dimensional ratios TJxl'lm and E.'!Em' vs. fibre-aspect-ratio lid and 
off-axis angle 8. Fibre volume fraction J.f is set to be 50%. Reprinted with permission from 
Feng (1999); see Haddad and Feng (1999). 
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Figure 15.52. Non-dimensional ratios 1],/Tfm and E/!Em' vs. fibre-aspect-ratio lid and 
off-axis angle 9. Fibre volume fraction ~is set to be 60%. Reprinted with permission from 
Feng (1999); see Haddad and Feng (1999). 
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Figure 1 5.53. Non-dimensional ratios 'lx ITJ., and E, 'IE.,' vs. fibre-aspect-ratio li d and 
off-axis angle e. Fibre volume fraction V, is set to be 70%. Reprinted with permission from 
Feng (1999); see Haddad and Feng (1999). 
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INPUT 
ACCUR the Accuracy 

K the Probe Length 
A a Reflection Coefficient 

Y an Expansion Coefficient 
B a Contraction Coefficient 

INITIALIZATION 
X(l,J) a Initial Point 

S(I,J) Coordinate Directions 
E Convergence Criteria 

I =1,2,3, ..... ,N-l,N 
J = 1,2,3, ...... ,N-l,N 

IM=l 

Construct starting simplex by 
XO+l,l)=XQ,l) + K*S(I,J) 
Evaluate F at each vertices 

Determine XO(J), XH(J),XL(J) and 
their corresponding FO, FH, FL and 

FM Determine XO(J), XH(J), 

Find XR(J) by reflection 
Evaluate FR = F(XR(J)) 

Figure 15.54. Computer program flowchart of"Simplex Optimization Method'. Reprinted 

with permission from Feng (1999); see Haddad and Feng (1999). 
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CHAPTER 16 

mE STOCHASTIC MICROMECHANICAL APPROACH 
TO THE RESPONSE BEHAVIOUR OF ENGINEERING MATERIALS 

16.1. Introduction 

In the past several decades, the micromechanical approach has been recognized as a 
promising tool for the description of the response behaviour of engineering materials with the 
inclusion of the so-called "locaf' or "microstructural' effects. The microstructure of a class 
of such materials, however, is discrete in the sense of being heterogeneous and/or 
discontinuous. In view ofthis fact, the so-called "deterministic micromechanics", that are 
based on the concepts of continuum mechanics, could no longer be accepted for the 
interpretation of the experimental results concerning the behaviour of discrete materials. It 
has been, therefore, increasingly appreciated that a more appropriate representation of 
discrete materials would only be achieved by including the random characteristics of the real 
microstructure. Further, the response behaviour of such microstructure is often both time- and 
loading history-dependent. Thus, the pertaining deformation process and its space- and time
evolutions are expected to be stochastic in character. In this context, the establishment of the 
connection between the response behaviour of the individual elements of the microstructure, 
their interactions, and the observable macroscopic behaviour would be an essential 
requirement. The fulfilment of the latter seems possible (Axelrad, 1993, and Axelrad and 
Haddad, 1998) by the introduction of the principles of set theory, together with the concepts 
of measure theory and topology. Thus, in the stochastic micromechanical formulations, 
continuum mechanics concepts are generally replaced by considerations of microstructural 
response variables in the form of discrete statistical functions. The latter are established within 
well-defined "measuring scales" defining the levels of observation into the material system. 

In order to describe the mechanical response of the nonhomogeneous material system 
from a microstructural point of view, it is necessary to consider the response of the individual 
structural elements which on a local scale could differ considerably from an average response, 
which would be arrived at by the phenomenological continuum formulations. Such local 
deviations in the response behaviour, which are usually neglected within the continuum 
mechanics approach, are directly related to basic properties of the nonhomogeneous material 
system. Accordingly, the stochastic microstructural analysis begins with a definition of the 
"structural element' of the particular material system under consideration and deals with the 
formulation of its response behaviour in a probabilistic sense. 

In order to extend the formulation, pertaining to the response behaviour of the 
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structural element, to the practical case of a macroscopic material system, the stochastic 
micromechanical approach makes use of "intermediate quantities" arising from the 
consideration of the existence of a statistical ensemble of structural elements within an 
intermediate domain of the material specimen. Further, it is equally important to find a 
connection between the microscopic and the macroscopic response formulations. Thus, the 
analysis aims at the formulation of a set of "governing response equations" for the structured 
material system that, in contrast to the classical continuum mechanics formulations, are based 
on the concepts of statistical theory and probabilistic micromechanics; see Axelrad (1984, 
1993), Haddad (1990, 1995), and Axelrad and Haddad (1998). In this context, it has been 
found useful to employ operational representation of the various relations. Hence, the notion 
of a "Material Operator" characteristic of the response behaviour of an intermediate domain 
of the material is introduced. This material operator provides the connection between the 
stress field and the occurring deformations within the intermediate domain, of the material 
system, under consideration. The "Material Operator" would generally contain in its 
argument those stochastic variables or functions of such variables distinctive of the response 
behaviour of the microstructure within the intermediate domain. In a very reduced and 
simplified form, such an operator may be expressed as 

where "r and aPr are random material operators expressing the response characteristics of 
elements of the microstructure, "K is a function of one or more geometrical parameters, p1 

and p2 are geometrical probabilities, € is the microstrain and t is the time parameter. Other 
variables that may be included in the argument of the material operator r( €, t) above could 
include, for instance, the temperature T and relative humidity <t>, among others. An 
approximate classification of structured solids that could be treated within the context of the 
presented stochastic micromechanical approach is presented in Table 16.1. Micrographs of 
the microstructures of a number of materials representative of some of the classes given in 
Table 16.1 are shown, with various magnifications, in Figures 16.1 to 16.6. Meanwhile, a 
comparison between some of the basic concepts of the stochastic micromechanical approach 
adopted here and the corresponding postulates of the conventional continuum mechanics 
approach is shown in Table 16.2. 

16.2. Probabilistic Micromechanical Response 

One of the main concepts of "stochastic micromechanics" (Axelrad, 1993) is the use of 
"three measuring scalei'. The smallest scale is identifiable with a "structural element' of the 
actual microstructure. The next scale is intermediate between the level of the structural 
element and the macroscopic scale of the material system. It is termed "meso". The third and 
largest scale is identifiable with the macroscopic material body. It is referred-to as 
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"macroscopic" . The concept of "three measuring scales" in stochastic micromechanics is 
dealt with in more details below. 

TABLE 16.1. Some classes of structured engineering materials that could be treated within the context of 
the stochastic micromechanical approach (after Axelrad, 1978) 

A 

Polycrysalline 
solids 

High 
temperature 
solids 

Directional 
solidified 
metals 

B 

Composite 
Materials 

Two-phase 
materials 

c 
Fibrous 
systems 

Paper 

Textiles 

D E 

Polymeric Particulate 
systems materials 

Synthetic Soils 
fibrous 
structures 

Dispersed 
particle 
systems 

Figure 16.1. TEM-micrograph (X5700) of Silicon-Steel. Reprinted from Axelrad, D. R. 
( 1993) Stochastic Mechanics of Discrete Media, Springer-Verlag Berlin Heidelberg, pp. 
64, with kind permission from Springer-Verlag Berlin Heidelberg. 
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Figure 16.2. TEM-micrograph (X1500) of Tungsten-Cobalt compound. Reprinted from 
Axelrad, D. R. (1993) Stochastic Mechanics of Discrete Media, Springer-Verlag Berlin 
Heidelberg, pp. 64, with kind permission from Springer-Verlag Berlin Heidelberg. 

Figure 16.3. SEM-micrograph (X1700) of Zirconium-Alloy. Reprinted from Axelrad, D. 
R. (1993) Stochastic Mechanics of Discrete Media, Springer-Verlag Berlin Heidelberg, pp. 

65, with kind permission from Springer-Verlag Berlin Heidelberg. 



www.manaraa.com

Figure 16.4. SEM-micrograph (Xl70) of Sulphite-paper (Fibrous structure). Reprinted 
from Axelrad, D. R. (1993) Stochastic Mechanics of Discrete Media, Springer-Verlag 
Berlin Heidelberg, pp. 65, with kind permission from Springer-Verlag Berlin Heidelberg. 

Figure 16.5. SEM-micrograph (X4800) of a Kaolin-Water compound (Soil). Reprinted 
from Axelrad, D. R. (1993) Stochastic Mechanics of Discrete Media, Springer-Verlag 
Berlin Heidelberg, pp. 66, with kind permission from Springer-Verlag Berlin Heidelberg. 
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Figure 16.6. SEM-micrograph (X2000) of Al-Giycol compound. Reprinted from Axelrad, 
D. R (1993) Stochastic Mechanics of Discrete Media, Springer-Verlag Berlin Heidelberg, 
pp. 66, with kind permission from Springer-Verlag Berlin Heidelberg. 

TABLE 16.2. A comparison between basic concepts of the probabilistic micromechanical 
approach and the corresponding concepts of classical continuum mechanics. 

Material System 

Local description 

Stress and 
deformation 

Classical 
Continuum 
Mechanics 

Continuous 

Mathematical 
point 

Continuous 

Analytical approach - Deterministic 
- Constitutive 
theory 

Stochastic Micromechanics 

Discrete 

Structural element 

Discontinuous 

- Stochastic 
- Operational formalism of the 
response of a structured material 
system 

16.2.1. A STRUCTURAL ELEMENT 

A structural element (K) is defined as the smallest part of the medium that represents the 
mechanical and physical characteristics of the microstructure at the "micro" level. In a large 
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class of structured material systems, this element is chosen arbitrarily to represent an 
individual micrelement as well as the binding interaction within the boundary between two 
matching microelements. Figure 16.7 illustrates the concept of a "structural element" for 
different classes of structured solids. 

Throughout this Chapter, a superscipt (K) to the left of the symbol will refer, in 
general, to a structural element. The quantities referring to an individual microelement is 
denoted by a superscript "a" while those referring to the bonding interaction within the 
boundary between two matching adjoining microelements a and P are designated by 
superscripts ap. 

Microelement "a" 
In the stochastic micromechanical approach, the continuum approach is maintained for the 
formulation of the response behaviour of a single microelement. Thus, it is understood that 
the effects of the microelement's substructural mechanisms, such as dislocations and other 
lattice imperfections, are not considered at this stage of presentation. Further development 
of the analysis, however, may include the effects of such mechanisms. Hence, it is considered 
in the present analysis that the overall response of the microelement is of greater significance 
to the overall response of the macroscopic material system. 

16.2.2. AN INTERMEDIATE SCALE "MESODOMAIN" 

The next scale is a "meso" of the material body and is associated with a countable set (finite) 
of structural elements K; (K = 1, ... N) where N is large enough to comply with the low of 
large numbers of probability theory. The "meso" scale is of utmost significance since it 
defines a set ofK; (K = 1, ... N) where all the statistics of the physical, geometric and field 
quantities governing the behaviour of the elements of the microstructure are assumed to be 
independent of position or index number. The various dependence relations and limiting 
procedures available to distinguish between "independent" and "dependent" random variables 
have been discussed by Axelrad (1993). 

6.2.3. THE MACROSCOPIC SCALE 

The third and largest scale is identifiable with the macroscopic material body and is defined 
as the union of disjoint mesodomains. It is the mathematical manifold representing the 
macroscopic body of the medium. It has to be recognized, however, that the considerations 
also involve the notion of "mean values" for an ensemble of structural elements for which 
experimental observations can be easily made. 

The scope of the stochastic micormechanical approach to the mechanical response of 
a randomly structured material system (of mutually interacting microelements) is 
demonstrated in Figure 16.8. 
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Figure 16. 7. The concept of a "stroctural element' for different classes of structured solids: 
(a) Polycrystalline solid, and (b) Fibrous structure. 
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Figure 16.8. Scope of the stochastic micromechanical approach to the response 
behaviour of a randomly structured material system. 
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In the following, the stochastic micromechanical approach will be demonstrated for 
the case ofpolycrystalline solid. Case studies concerning the application of this approach to 
fibrous structures can be found in Haddad (1995). The apptoach has been also demonstrated 
by the author for the case of composite systems (see Haddad, 1986b, and Haddad and Tanary, 
1989). 

16. 3. The Stochastic Micromechanical Approach to the Response Behaviour of 
Polycrystalline Solids 

16.3.1. STEADY-STATE RESPONSE 

Structural Element 
Microelement (a). The strain increment, in a continuous "elasoplastic" microelement, may 
be expressed as the sum of elastic and plastic increments as 

(16.1) 

Introducing, with reference to the microelement's local coordinate frame, Fig. 16.9, a micro
stress "l;g in the Cauchy sense, one can write the elastic response equation in an incremental 
form as 

A <X 1: -"'E A <X (e) 
L.l <,ij - ijkl L.l Ekl 

where "E;j k 1 is the elastic tensor modulus of the "continuous" microelement (a ). 

The plastic strain increment is assumed to be given by the flow rule as 

!1 E(pl = T .. !1). 
IJ IJ 

(16.2) 

(16.3) 

in which f is the yield function and !:1). is a scalar function. Assuming that the yield function 
is tO be given by the plastiC WOrk W(P), i.e. 

(16.4) 
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then, the scalar function is calculated by (Kitagawa and Tomita, 1973) 

( ) . . 
!::.. ').. = ( T !::.. r: tu: P ) I (F r: .. T..) 

nm Smn mn ~IJ tj 

where 

dF 
F --- and 

dWCPl 
(16.5) 

From equations (16.1), (16.2) and (16.5), it follows that 

(16.6) 

Assume the linear incremental constitutive equation 

(16.7) 

whereby the material operator ~iki can be written, in view of equations (16.1)- (16.7), as 

A ikt = Eiikt - T uw T pq Epqkt Eijuw I (F . ~mn + Emnrs T rs - Rmn) Tm n (16.8) 

From the above, Eqn. (16.8) is valid for any arbitrary yield function f. Assuming, for 
instance, the von Mises yield function 

1 . . 1 2 
f =- ~- ~- =- ~ 2 IJ IJ 3 

then, Eqn. (16.8) reduces to 

... 2- . 
Aiikt = Eiikl - 211 ~ii ~ii ~kt I 3 ~2 ( F I (2 ll + 1 )) (16.9) 
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in which 11 is the shear modulus. Let the operator Li i k 1 represent the second term on the 
right-hand side ofEqn (16.9); hence, in terms of this operator, one can write, with reference 
to Eqn (16.7), that 

(16.10) 

where Lijkl is seen as a material operator representing the plastic response of the 
microelement. Meantime, the response behaviour of the microelement is expressed in terms 
of the incremental microdeformation as 

(16.11) 

where the material operator "rii, takes, in view of(l6.10), the form 

(16.12) 

Inter-elemental Boundary "a{J" 
In any mathematical approach to the response behaviour of material systems that would be 
based explicity on microstructural considerations, it is of utmost importance to include in the 
formulation the internal surface effects caused by existing inter-elemental boundaries. In this 
regard, several models have been proposed in the literature to assess the intercrystal energies 
as associated with the possible inter-elemental boundary topology. 

In the case ofpolycrystals, for instance, Bollmann (1970) defined grain boundaries in 
terms of'coincidence lattices' obtained from the interpretation of two adjoining grains. This 
led to Bollmann's 'low misfit angle 0 1-lattice' and 'high misfit angle Orlattice' theories. 
The two latter concepts, introduced as the sum of all positions of 'best fit', represent a 
description of the possible boundaries between two idealized crystals of given structure and 
crystallographic orientation. 

Within the present analysis, one seeks an expression incorporating the mechanical 
response of the inter-elemental boundary separating two neighbouring microelements a and 
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p. In this context, the interaction between a pair of atoms "q and ~q, on the matching surfaces 

of a and p, separated by a distance vector o is assumed to be given by a 'pair potential 

function' defined by (Morse, 1929) 

D (I d I) = D0 [ exp { - 2b ( I 0 - 11 I )} 
- 2 exp { - b ( I O - 11 I )} ]; (d = 0 - 11) 

(16.13) 

in which D0 is the equilibrium value of the potential, 11 is the equilibrium separation vector 

corresponding to D0 and b is a material constant. The values of the above parameters are 

given in Table 16.3 for a number of material systems. 

TABLE 16.3. Potential function parameters 

Copper Aluminium Gold 

D0 (eV) 0-216 67 0-140 0 0-180 0 

b (A_,) 2-233 49 2-277 75 2-969 98 

\11 I (A) 2-547 56 2-847 80 2-874 13 

In a manner similar to the operational formulation of the response of an individual 

microelement, Eqn. (16.11), one can express the bonding response in an operational form. 

For this reason, a transform operator "~r for the bonding interaction is introduced such that 

«Pr = «Pr «Pd 
.. ij ijk k (16.14) 

where txP dk (t) is now the generalized relative displacement between the two matching 

microelements a and p. This relative displacement may be expressed, following Gel'fand 

and Vilenkin's generalized functions concepts (1964), as 

(16.15) 
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in which the symbol " indicates a discrete value of the parameter and o is the three
dimensional 'Dirac-delta' function. 

With reference to (16.13) and (16.14), the expression for the operator "~ riik of(16.14) may 
be approximated by 

-2b 2 D 
cxP r,;;k (t) = o ap g. cxp v. cxP g -I , cxp , J k 

a 
(16.16) 

where "P a is the area per bond, and "P v 1 are the components of the unit normal to the grain 
boundary (ap). 

Transition to the Macroscopic Response Behaviour 
Following the concepts ofthe micromechanical theory of structured media (Axelrad,1984, 
1993, and Axelrad and Haddad, 1998), all microscopic field quantities within the intermediate 
domain are considered to be stochastic functions of primitive random variables. Thus, the 
components ofthe microstress, for instance, are seen as stochastic functions K~(r,t) that can 
be regarded as a family of random variables ·~(r) within the intermediate domain depending 
on the time parameter t, or a family of curves ·~r(t) depending on the structural element 
position vector •r. 

The basic kinematic quantities pertaining to the deformation of the material 
microstructure are considered as follows: 

The microelement deformation vector, 

" d : " d; i = 1 ,2, 3 

and the interfacial bonding deformation within the inter-elemental boundary, 

Within an intermediate domain of the medium, referred to as a "mesodomain" (Axelrad, 1984, 
1993), the above kinematic quantities are considered to be stochastic functions of primitive 
random variables. 
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The basic kinematic parameters, at any particular time, which describe the changes that have 

taken place in the structural element, may be seen as the outcome of (K) due to the 
deformation process and is designated by 

KTj:KTj( ((=1,2, ... ,ffi) 

where 11 = 6 represents the number of basic kinematic parameters above. The entire set of 
possible outcomes define the sample space L , i. e. IC TJ E L . 

It is understood, however, that due to experimental limitations, • 11 cannot be determined in 
an exact fashion. This, then, calls for a "parameter cell" type of formulation which is 
common in statistical mechanics. 

Thus, the event 3 is taken to be the experimentally specified parameter cell in~, such that 

where I1TJ is the experimental range of the measurement of the kinematic parameter. Thus, 
during the deformation process, the probability of the kinematic parameter being in the event 
3 is a probability measure that changes with time and may be designated by { 3}. Thus, one 
could identifY this probability measure by arbitrarily setting 

where Q indicates a particular value in the event 3. 

Now, consider the basic kinematic random variable (vector) d1 (s) for some fixed time (s); 
the most convenient definition of such variable may be provided by the choice of the image 
set 

i.e., the value of the random variable at this particular time s is the outcome TJ. Furthermore, 

the probabilistic distribution for the random variable is established by the condition that the 
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set 

is an event for all values ofQ e 1:. 

Now, the basic kinematic stochastic process ~ can be considered, as an extension of the 
foregoing, as a family of random variables { ~ ( s ); s, t > 0}, where its probability distribution 
function can be read as 

16.3.2. STOCHASTIC APPROACH TO THE INTERNAL DAMAGE IN A 
STRUCTURED SOLID 

One of the main objectives of the mechanics of deformable solids is the formulation of the 
ductile fracture process in materials. In metals, for instance, the ductile fracture phenomenon 
is generally associated with the nucleation of micro voids, their growth and interlinking in the 
material specimen (Rosenfield, 1968, and McClintock, 1968). Although significant research 
efforts have been made in recent years towards understanding the controlling factors involved, 
no comprehensive ductile fracture criterion has yet been reached. This is due primarily to the 
great theoretical complexity of the problem and the difficulty in carrying out definitive 
experiments (Rosenfield, 1968, and Sih, 1983). 

Microscopic voids usually form at sites of second phase particles such as inclusions, 
precipitates and dispersions. There is, also, the possibility that such voids may form at highly 
strained regions in the specimen regardless of the presence of second phase particles (Rogers, 
1971). With the evolution ofthe fracture process, such voids grow and join together into 
larger voids or cracks. The latter becomes, then, the source of localized microstresses and 
microdeformation bands which spread in the microstructure in directions determined by the 
boundary conditions of the macroscopic specimen. As a result, additional micro voids may 
also form and they, too, would grow and coalesce leading to additional cracks in the 
specimen. Such a process would, then, repeat itself pending on the rate of energy transfer in 
the microstructure until the final collapse of the material. 

Void nucleation at the sites of included particles is attributed to a large extent to the 
strength of the particle, the particle-matrix interfacial bonding, as well as the mechanism of 



www.manaraa.com

389 

load transfer between the matrix and the particle during the deformation process. When the 
particles are weak or brittle, void nucleation occurs by the shattering of the inclusions at very 
small strains (e.g., Nemat-Nasser, 1977). On the other hand, when the particles are strong, 
but weakly bounded to the matrix, nucleation would occur by particle-matrix bond 
decohesion. Equivalently, a case when the particle is not bonded to the matrix may 
demonstrate a pre-existing void. When the metal contains, however, strong particles which 
are strongly bonded to the matrix, void formation is retarded and the material demonstrates 
improved ductility (e.g., Nemat-Nasser, 1977, and Argon and Safoglu, 1975). 

While void formation is an essential part of the ductile fracture process, the most 
influential factors leading to the final failure of the macroscopic specimen are void growth and 
void coalescence within the highly strained matrix between the voids. In effect, such events 
occur in a rather cooperative manner: the nucleation of voids due to particle-matrix bond 
decohesion concentrates the strain in narrow bands emanating from the voids (e.g., 
Rosenfield, 1968), while bands impinging on particles cause holes to form around these 
particles (see Rosenfield, 1968, and Ashby, 1966). Either of such events may occur first 
commencing the process of ductile fracture. Further, during the fracture process, the particles 
may block the path of the deformation lines within the matrix, hence, resulting in large stress 
concentration. On the other hand, these stresses could be partially relieved by void formation. 
However, if the metal is of high ductility, the void may not grow immediately into a crack, 
but is blunted by local plastic flow (Rosenfield, 1968). In this regard, Bluhm and Morrissey 
(1966) pointed out that hole formation and growth are usually gradual, but, hole coalescence 
is rapid and catastrophic. Once holes begin to join together, they are very rapidly converted 
into a crack which may transverse the cross-section of the material specimen in short time. 

The conventional approach to the formulation of the fracture process in ductile solids 
is based on continuum and 'modified continuum models which usually ignore the 
nondeterministic influence of microscopic events such as those referred to above. Examples 
of such models are due to McClintock (1968), Hult and McClintock (1956), Hult (1957), 
Rice and Tracey (1969), among others. These models imply, within the restrictions of 
continuum mechanics, that all the basic quantities involved in the fracture process are con
tinuous variables or functions of such variables. Due to the randomness of events leading to 
ductile fracture, the field quantities fail to be continuous particularly at the evolved boundaries 
within the specimen. Hence, it becomes necessary to consider such local events as an integral 
part of the problem. In this context, the need for a probabilistic approach to the problem, that 
accounts for the random nature of the phenomenon, has been discussed frequently in the 
literature (e.g., Haddad, 1985a). 
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In the following presentation, a probabilistic, microstructural approach to the 
formulation of the fracture process in a ductile solid is introduced. Following the concepts of 
the stochastic micromechanical theory, as introduced earlier in this Chapter, the material 
system is regarded as heterogeneous medium of actual microstructural elements. These 
elements may exhibit random geometric and physical characteristics and are further disturbed 
by a random distribution of second phase particles, Fig. 16.9. The latter are, in general, ir
regular in size, shape, orientation as well as interspacing. Hence, in the stochastic 
micromechanical approach, the mechanics of the discrete microstructure introduce the rel
evant field quantities as random variables or functions of such variables and their correspond
ing distribution functions. Further, the evolution of the internal events in the microstructure 
and their interaction effects are considered in this approach to be time-dependent. Hence, as 
introduced earlier, it appears appropriate to consider the accompanying evolution process as 
a stochastic process (e.g., Axelrad, 1984, Provan, 1971 and Haddad, 1983). 

For the simplification of the analysis, it is assumed in the present model that the 
included particles are of sufficient strength so that they would not break during the 
deformation process. Accordingly, void formation at the particle-matrix interface is seen, 
rather, to play the prominent role in the initiation of the fracture process in the specimen. 
Here, the transfer of microstress between the matrix and the particle is considered to be 
carried out through an interfacial binding mechanism. Hence, from a micromechanical point 
of view, the nucleation of a microvoid at the particle-matrix interface is considered to occur 
when the associated binding stress satisfies the criterion of a maximum binding displacement 
value corresponding to the cut-off of the binding potential. The growth of a resulting 
microvoid is, then, assumed to follow a 'transgranu/ar' random walk, of the discrete Markov 
type (see Bharucha Reid, 1960). The latter is associated with the build-up of strain in the 
matrix surrounding the void (see McClintock, 1958, and Haddad and Sowerby, 1977). Two 
probabilities of absorption are involved here, i.e., at the structural element boundary and at 
infinity. As the crack reaches the boundary between two neighboring elements (grains), an 
inter-elemental (intergranular) fracture process may set up. Thus, a time-dependent, non
homogeneous intergranular fracture process is examined in relation to the intensities of 
transformations within the grain boundary. 

A Structural Element 
As defined in the foregoing, a structural element of the medium is defined as the smallest 
region of the microstructure that represents the mechanical and physical properties at the 
microlevel. In the case of a polycrystalline material, this element is chosen to represent an 
individual grain (a), as well as the grain boundary between two matching grains (a&p). To 
model the ductile fracture process involved, one assumes that there exists the probability that 
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the microelement is disturbed by the presence of second phase particles within the grain. 
Following our presentation above, a superscript "a." on the left of the symbol will refer, in 

general, to the individual grain within the structural element (K). A distinction is made, 
however, between the matrix within the grain and the particle that may be present in the grain. 
Hence, the quantities referring to the former will be designated by "m", while those identifying 
the particle will be designated by "i". The grain boundary between two matching grains a. and 
pis referred to by "a.P'', as introduced earlier. 

UN DEFORMED DEFORMED 

Inclusion 

Z3 e1 (1=1,2,3) 

Figure 16.9. A structural element (K). Reprinted from Haddad, Y. M. (1986) A stochastic 
approach to the internal damage in a structured solid, Theoretical and Applied Fracture 
Mechanics 6, 175-85, with kind permission from Elsevier Science Publishers B. V. (North
Roland). 

For the description of the deformation kinematics of a structural element ( K ), it is con
venient, as shown in Fig. 16.9, to use two local Cartesian frames of reference, i.e, 

a Y k ( k = 1, 2, 3) attached to the center of the grain and ; Xk ( i = 1, 2, 3) that can be used to 

describe the orientation of the particle "i" of "a.". These coordinate frames are to express the 

local motion of the microstructure relative to an external Cartesian frame Z1 (I = 1 ,2,3). 
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Particle-Matrix Interface. In any microstructural approach to the formulation of the fracture 
process in a ductile solid, it is of utmost importance to include in the analysis the effect of 
interfacial bonding between the second phase particles and the matrix material within the 
specimen. Due to the complexity of the interfacial conditions of the two components, there 
could be significant physical difficulties that would make any direct attempt on the problem 
rather impossible. One may, however, advance the argument that two types of bonding may 
be responsible for the strength of the particle-matrix interface, i.e., chemical and the so-called 
physical (or frictional) bonding. The first is essentially determined by the compatibility of the 
atomic structure of the two materials to form a particular type of bonding. Such compatibility 
may be translated in terms of the type of matching atoms that might be available to form the 
bond, interfacial energy and topology, among other factors. On the other hand, frictional 
bonding is primarily due to the contact forces that may develop between the two materials 
during metal forming and subsequent heat treatment operations. It is also possible that the 
products of chemical reaction between second phase particles and the matrix may enhance or 
impair the bonding between the two components. 

With reference to Fig. 16.10, the distance vector A between, for example, two 
matching points mq and iq of the matrix and the particle i, respectively, is considered to 
be the basic kinematic parameter of an interfacial bonding. The counterpart of this vector in 
the deformed state is denoted by a and the microdeformation in the bond, at time t, can thus 
be read as 

d(t)=t>(t)-A (16.17) 

In case of chemical bonding, for instance, between matching points of the particle and the 
matrix, a 'pair potential' form appears to be most suitable for the description of the binding 
interaction. One of the usual forms of such a potential is represented by 'Morse function' , 
presented earlier by (16.13). 

Based on the bonding potential form of ( 16.13) , an operational response relation for 
the particle matrix bonding interaction can be expressed, as demonstrated earlier in this 
Chapter (see, also, Haddad, 198Sb) as 

(16.18) 
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In the response equation 8 ~u(t) is the matrix-particle bonding microstress at time 
t, 8 ruK is the pertaining material operator which takes a form similar to (16.16), i.e., 

(16.19) 

where mia is the interfacial bond area, min1 is the unit normal to the interface at the point 
in question and ~ is a unit base vector associated with the external coordinate frame, Fig. 
16.10. 

The particle-matrix interfacial stress 8 ~(t ), Eqn. (16.18), may be also related to the 
macroscopic stress on the specimen as established by Haddad (1986). Hence, in view of the 
latter reference, one can write that 

(16.20) 

in which ((t) is a probabilistic, time-dependent function expressed in terms of the geometrical 
characteristics and the orientation of the local microstructure (see Haddad, 1986), and Ou is 
the macroscopic stress. Equation (16.20) establishes the "criterion ofmicrovoid initiation" 
at the particle-matrix interface due to an interfacial bond failure.The latter is seen to 
correspond to the value of I 8 d(t) I~ I 8 d I max' i.e., atthe cut-off of the binding potential. 
In view of equations (16.19) and (16.20), the position of the interfacial bond under 
consideration is determined by the unit normal min. to the surface of the particle i whose 
orientation is determined by Cgk · e1), Fig. 16.10. J 

Following the above, a debonding process along the particle-matrix interface 
would, in turn, create a debonded (free) zone at the site of the particle. In the present model, 
it is assumed that the free zone is one which would initiate a "transgranular" crack 
propagation within the grain. 

Growth of a Transgranular Crack 
In the dealt with model, the growth of a transgranular crack is thought to be consisting of a 
series of steps (McClintock, 1958 and Haddad and Sowerby, 1977). First, the local stress is 
increased until a point of incipient fracture is reached in the matrix material surrounding the 
void. Fracture then occurs for an incremental distance during which time the redistribution 
of stress in the neighborhood of the crack will cause a further increase in the total 
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accumulated strain there. Ifthis increased strain due to the redistribution of the stress is not 
enough to leave the local matrix in a condition to satisfy the fracture criterion, further growth 
will not occur until the local stress is increased. The process of increasing the applied stress 
and then cracking with associated straining and redistribution of stress is repeated 
stochastically until a stage is reached in which there is enough strain to satisfy the fracture 
instability criterion. Under these conditions, no further increase in the local stress might be 
required and the crack will become unstable in growth until it reaches an absorbing barrier. 
The latter is assumed, in the present analysis, to be the grain boundary ahead the direction of 
crack growth. 

In view of the above, the growth of a nucleated fissure within the grain is assumed to 
follow a random walk of a finite set of states x = 0, I , .... , i, .... , <1> where the states 0 and <1> 
are seen as absorbing barriers representing, respectively, the nucleation site of the fissure and 

Za 

(a) 
DEFORMED 

UNDEFORMED 

Figure 16.1 0. Particle-matrix interface. Reprinted from Haddad, Y. M. (1986) A stochastic 
approach to the internal damage in a structured solid, Theoretical and Applied Fracture 
Mechanics 6, 175-85, with kind permission from Elsevier Science Publishers B. V. (North
Roland). 
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the grain boundary ahead of the crack tip as shown in Fig. 16 .11. In this figure, the state i is 
identified by the site of the crack tip as designated by the position vector r (i, t). In this con
text, two probabilities p and q are introduced: 

-the probability, independent of the position, that the crack tip will move one 
step from position i to i + 1. 
- the probability that the crack tip will move, independent of the position from 
position i to i - 1. 

With the understanding that p + q = 1. 

With reference to (McClintock, 1958, and Haddad and Sowerby, 1977), one may 
express the probability of growth, p, as follows 

p = p {( ~) d c - ( ~) d c ~ ( ~) d ~ l ay c,~ ac ~ a~ c,y 
(16.21) 

The first term on the right-hand side of (16.21) represents the plastic strain gradient at a unit 
distance in front of the current tip of the crack, for an instantaneous crack length c and at the 
current grain stress level ~. The second term in this equation represents the plastic strain 
gradient occurring during the previous growth step. The last term, however, designates the 
increase in the strain level that would be necessary to provide for the difference between the 
first two terms. 

Let rr:i n denote the probability that the random walk of the crack tip will terminate 
with the nth i~crement of time at the barrier (<I>) between the two joining elements a and p 
when the initial position of the crack tip is i. 

After the first step, the position is either i + 1 or i - 1 with probabilities p and q = 1 - p, re
spectively, as indicated above. Thus, one can write for 0< i < <I> - 1 and n = 1 that 

(16.22) 

subject to the boundary conditions: 
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rt = rt = 0 for n> 1 , O,n <j>,n 

rccp,o = 1 and rti,o = 0 fori> 1 
(16.23) 

The boundary conditions (16.22) are valid for all i with O<i<<l> and n20. The solution of 
(16.21) subject to (16.22) is given by 

(16.24) 

Figure 16. 11. Growth of a transgranular crack. Reprinted from Haddad, Y. M. (1986) A 
stochastic approach to the internal damage in a structured solid, Theoretical and Applied 
Fracture Mechanics 6, 175-85, with kind permission from Elsevier Science Publishers 
B.V. (North-Holand). 
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Considering, now, the case in which X= 0 is the only absorbing barrier, i.e., when <I>=""· In 
this case, by adjusting the boundary conditions (16.22) accordingly and letting <I> ~oo m 
(16.23), the latter becomes 

1t. = 2n p (n + i)/2 q (n- i)/2 
1,n 

I 

X J { cosn- I ( 1t X) sin ( 1t X) sin ( 1t xi)} d X 
(16.25) 

0 

Equation (16.24) leads to the probability of eventual absorption at the barrier <I>, i.e., when 
the transgranular crack reaches the grain boundary ahead. Denoting the latter by P, then 

P=L n. =( 1-y'f=4Pq); 
n=O l,n 2q 

(16.26) 

which can be written as 

for q;:. p, 
(16.27) 

for q~p 

Two Propagating Fissures. In Fig. 16.11, the local positions of two neighboring particles are 
· · · ·I ·I ·I identified by the two local coordinate frames I XI' I x2' I x3 and I x, I ~ I x3 . The two 

particles may be sited within the same grain a or within two adjoining grains a and p as 
shown in the figure. 

Thus, during the fracture process, the tip of the nucleated fissure of particle i may 
follow a random walk characterized by a finite set of states iX =0, 1, ... ,j, ... , "ll<j>with prob
abilities i p , i q and i 1t. n as identified previously in the section above pertaining to the growth 
of a trans granular crac~. The second fissure, nucleated of particle i', may also follow in its 
growth a random walk defined by the finite set of states i 1X=01,1, ... ,j 1, ... , "ll<l> with ·I ·I ·I ·I ·I · 
probabilities 1 p, 1 q and 1 1t.1 n1, where 1 p = 1 pCp). Accordingly, a simultaneous 
absorption of the two propagating fissures may occur at the grain boundary, .. p <I>, if 

·I In 
j l,nl' (16.28) 
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subject to the conditions (16.23). 

Further, the probability of eventual, simultaneous absorption of the two fissures at the grain 
boundary could be expressed by the condition 

"' in. = "' L, J,n L, 
n=O n 1=0 

·I 
'n j/,n/' (16.29) 

which can be further expressed in terms of the associated probabilities of growth, p and p', 
by utilizing equations (16.26) and (16.27). 

As soon as the crack tip strikes in it growth, the grain boundary ahead, a debonding effect 
might take place between the two adjoining grains. 

Intergranular Facture 
In the present model, a fracture zone between two adjoining grains is seen to consist of two 
parts (Axelrad, 1984). A cohesive zone, in which the neighbouring grains act as completely 
bonded and a debonded (free) zone in which bonding has ceased to exist. The existence of 
such a free zone could have been initiated by a perfect debonding process due to the increase 
of local stress, or as a result of ductile fracture by void formation intercepting the grain 
boundary as dealt with in the previous section. From this point of view, the free zone is one 
which will initiate an intergranular crack propagation or debonding process towards the 
cohesive zone. In this context, following Axelrad (1984), we assume that the intergranular 
fracture process occurs in a rather cooperative manner, i.e., bonds can dissociate and reform 
within the same mechanical state. Thus, it may be visualized that the breaking of intergranular 
bonds will occur in such a manner that energy is released activating bond formation within 
the same sites in the specimen. Hence, we consider a process such that the number of 
intergranular bonds can experience positive as well as negative jumps. Thus in general, a time
dependent nonhomogeneous birth-and-death model (Kendall, 1948) is seen to be applicable. 

If at time t, the material system is in the state L ([ = 1, 2, ... ) corresponding to a number of 
existing intergranular bonds n(t): ni, one considers that both, the intensities of positive and 
negative transitions to be time-dependent. The latter are designated, respectively, in the 
following analysis by A.(t) and Jl(t). Accordingly: 
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(i) The probability of transition from the state L, to ( L, + 1) in the 
interval (t, t + Llt) is A.(t) Llt + O(Llt); 

(ii) The probability oftransition from the state [to ([- 1) in the interval 
(t, t + Llt) is ll (t) Llt + O(Llt); 

(iii) The probability of a transition to a state other than a neighbouring 
state is O(Llt); 

(iv) The probability of no change is 1 - (A. (t) + f.! (t) ) + O(Llt); 
(v) The state [ = 0 is an absorbing state corresponding to the breakage 

of all inter-granular bonds within the material specimen. 

The above assumptions lead to the relation 

PI (1 +Llt) = A.(t)PI_ 1(t)Llt 

+[1-{A.(t)+f.!(t)}Llt]PI(t) 

+ f.l(t) PI> I (t) Llt +O(Llt), 
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(16.30) 

where PL is the probability that the material system is in the state [ as defined above. Equa
tion (16.30) leads in the limit to the following differential equation 

(16.31a) 

which holds for [ = I, 2, .... for [ = 0, however, one has 

(16.31b) 

The solution of Eqn. ( 16.3 1) can be obtained with the aid of generating functions Hence; 
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where: 

PL(t) = [I-((t)][I-Y(t)] [Y(t)]L- 1 , 

L = I,2, ... , 

P0 (t) = ((t), 

e -y(tl 
((t) =I-

Q(t) 

1 Y(t) =I--
Q(t) 

y(t)= j[~('t)-A(t)]dt,and 
0 

(16.32) 

(16.33) 

The probability of total intergranular bond dissociation is, then, given with reference to 
(I6.32) and (I6.33) by 
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CHAPTER 17 

INTELLIGENT MATERIALS- AN OVERVIEW 

17.1. Introduction 

Engineering materials are used either for their inherent structural strength or for their 
functional properties. Often a feed back control loop is designed so that the mechanical 
response of the material is monitored and the environment that is causing such a 
response can be controlled. The evolution of a new kind of material termed 
"Intelligent'', "Smart", or "Adaptive" by various researchers, e.g., Rogers (1988) and 
Ahmad (1988), witnesses a significant development in materials science whereby the 
referred-to smart material adapts itself to suit the environment rather than necessitating 
to control the same. In this context, development in the area of materials research aims 
at incorporating intelligence into engineering materials, enabling them to sense the 
external stimuli and alter their own properties to adapt to the changes in the 
environment. 

This chapter discusses possible forms of intelligence that may be incorporated in these 
materials. Three basic mechanisms of intelligent materials, namely, the sensor, 
processor and actuator functions are described. Implementation of these in the 
microstructure of various materials, as well as associated algorithms and techniques are 
illustrated. Different models, control algorithms and analyses developed by various 
researchers are reviewed and their potential applications in engineering materials are 
presented. 

17 .2. Dermition of an Intelligent Material 

"Intelligent" or "Sman'' materials may be defined as "Those materials which sense any 
environmental change and respond to it in an optimal manner", e.g., Rogers et al. 
(1988). From this definition and the analogy of the bionic system of humans and 
animals, it can be seen that the following mechanisms may be essential for any material 
to be made intelligent. 

(i) A sensing device to perceive the external stimuli (e.g., skin 
which senses thermal gradients, an eye that senses optical signals, 
etc.), termed as "sensor'' function. 

404 
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(ii) A communication network by which the sensed signal would be 
transmitted to a decision-making mechanism (e.g., the nervous 
system in humans and animals), termed as "memory" function. 

(iii) A decision-making device which has the capability of reasoning 
(e.g., the brain), termed as "processor" function. 

(iv) An actuating device, which could be inherent in the material or 
externally coupled with it (e.g., stiffening of muscles in humans 
and animals to resist deformation due to external loading), termed 
as "actuator" function. 

405 

All of the above mechanisms need to be active in real time applications, for the 
material to respond intelligently. Another important factor in the overall process is the 
time of response. This is the interval between the instant when the sensor senses the 
stimulus and that of the actuator response. An optimum time interval is crucial in the 
design of intelligent materials and is dependent on the type of application. 

17 .3. The Concept of Intelligence in Engineering Materials 

As mentioned earlier, designing a material system which incorporates sensor, processor 
and actuator functions is the fundamental step in the evolution of an intelligent material 
for achieving a desired response adaptable to the environment. This concept is 
illustrated in Fig. 17 .1. 

~ 
stimuli 

Sensor 

External 
stimuli 

Actuator 1--+----- function of 
smart 
materials 

Figure 17.1. Concept of an intelligent material. Reprinted from Iyer, S. S. and Haddad, 
Y. M. (1994) Intelligent materials - An overview, Int. J. Pres. Ves. & Piping 58, 335-
44 with kind permission of Elsevier Science Limited. 
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17.3. I. SENSOR FUNCTION 

The concept of a sensor function in a smart material is defined as the ability ofthe material 
to sense the response characteristics of self with respect to environmental factors such as 
mechanical loading, temperature, humidity and electrical inputs. An example of this 
function is that of a piezoelectric sensor embedded in a composite material. Such sensor 
diagnoses the mechanical disturbance imposed on the material by generating a voltage 
which can be further measured and analysed. 

17.3.2. MEMORY AND PROCESSOR FUNCTION 

This mechanism stores the signals which are sensed and transmitted earlier by the sensor 
function. The characteristics of these signals are then compared with pre-stored 
acceptable values acquired during the 'training process of the processor (see Chapter 18). 
The training process may be carried out using an artificial intelligence technique, e.g., 
pattern recognition method (Chapter 18). Typically, this function is in the form of an 
executable artificial intelligence software that could produce a logical output in the form 
of an electrical voltage that could further be amplified and used to activate an actuator 
mechanism. 

17.3.3 ACTUATORFUNCTION 

This mechanism is coupled with the material. It produces an output corresponding to the 
signal received from the processor function. This output is usually in the form of a 

Amplifiers fo 
sensor output 
and actuator 
input signals 

ensors 
Composite 

~E~=~=~=~~/beam 

·~ 

Control circuit 

CPU 

·. 
Host processor 

Figure 17.2. Incorporation of sensor, processor and actuator functions in an intelligent 
composite beam. Reprinted from Iyer, S. S. and Haddad, Y. M. (1994) Intelligent 
materials- An overview, Int. J. Pres. Ves. & Piping 58, 335-44 with kind permission 
of Elsevier Science Limited. 
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restoring stress, strain or change in temperature, or stiffness, of the actuator mechanism 
that is coupled with the material. This change would be designed to neutralize the effect 
of the change in environment on the material, thereby adapting the material continuously 
to its environment. A typical intelligent composite cantilever beam which comprises of 
sensor, processor and actuator functions is illustrated in Fig. 17.2. 

17 .4. Artificial Intelligence in Materials 

Different forms of substances that could be incorporated into the material as sensors and 
actuators are piezoelectric and piezoceramic devices. Optical fibres are used as sensors. 
Shape memory alloys, shape memory polymers and electrorheological fluids are employed 
as actuators. The following subsections describe the effectiveness of such materials as 
intelligent substances and their successful implementation in real time applications; e.g. 
Takagi (1990). 

17.4.1. PIEZOELECTRIC AND PIEZOCERAMIC DEVICES 

Piezoelectric and piezoceramic materials could be used as sensors and actuators in 
intelligent materials. These materials can convert a mechanical signal to an electrical 
voltage. Various researchers have developed models, through analytical and numerical 
simulation as well as experimental techniques, to verifY the concept of piezoelectric 
materials as intelligent sensors and actuators. The reader is referred to, among others, 
Kraut (1969), Crawley and Luis (1985, 1987), Sung-Honein et al. (1991), Kyu Ha et al. 
(1991 ), and Lee eta/. (1991 ). 

A piezoelectric material is a crystal in which electricity or electric polarity is 
produced by pressure. Conversely, a piezoelectric material deforms when it is subjected 
to an electric field. The first characteristic expresses the so-called "direct" effect, while 
the second expresses the "converse" effect; e.g., Cady (1946), Gerber and Ballato (1985), 
and Ikeda ( 1990). Following the above characteristics of a piezoelectric crystal, if the 
pressure on the crystal is replaced by a stretch, the sign of the electric polarity would be 
reversed accordingly. This is determined by the crystal structural "bias" which establishes 
whether a given region on the surface is subjected to a positive or a negative mechanical 
effect. In the converse effect, the same unidirectional aspect determines the sign of 
deformation when the direction of an electric field is reversed in the crystal. It is this 
reversal of sign of mechanical strain with that of the electric field that distinguishes 
piezoelectricity from electrostriction; e.g. Cady ( 1946}, Olson ( 1956} and Bailey and 
Hubbard (1985). 

The basic quasi-static theoretical treatment of a piezoelectric material under 
loading is based on the definition of four parameters that describe the elastic and electric 
states of this material. These are the elastic stress ( O;i), elastic strain ( E;), electric 



www.manaraa.com

408 

displacement (D) and electric field(~). Any two of these four parameters may be chosen 
to be the independent variables and the other two will accordingly be the dependent 
variables in the model. In addition to the above-mentioned parameters, the mechanical 
equilibrium equation (oji,j + Xi = 0), Maxwell's equation (D~i = 0) and the electrical and 
mechanical boundary conditions would be specified for a complete description of the 
electromechanical state of the piezoelectric material. 

Constitutive Relationships 
The phenomenon of piezoelectricity is assumed to be linear, whereby the electric and 
elastic quantities are considered to be linearly related. Thus, the electric polarization (PJ 
is seen to be related to the elastic stress oij by the relation 

P; = diJkoJk (17.1) 
where the components of the third order tensor dyk are the piezoelectric strain 
coefficients. 

The existence of such a polarization will result in an electric field ~i which would 
be linearly related to the polarization Pi through the relation Pi = EoXij~j where E0 is the 
universal dielectric constant and xij is the electric susceptibility coefficient of the material. 
Therefore, the complete equation for the direct piezoelectric effect is written as 

(17.2) 
or, in terms of the corresponding strains Ejk, 

(17.3) 

where the components eijk are the piezoelectric stress coefficients. 

An alternative form to equation (17.2) and (17.3) is expressed in terms of the 
electric displacement, i.e., 

(17.4) 

where ~ is the permittivity tensor. 

In the converse effect, strains (or stresses) are produced. They are assumed to be 
linearly related to the imposed electric field ~i' i.e., 

(17.5) 

(17.6) 
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The occurrence of a stress (or strain) would further evoke a corresponding mechanical 
response in the crystal. The total stress contribution of a converse piezoelectric effect is, 
thus, expressed as: 

(17.7) 

The corresponding strain contribution is given by 

(17.8) 

where in (17. 7) and (17.8), Eijkl and Cijkl are the elastic modulus and compliance tensors, 
respectively. 

Table 17.1 describes the utilization of direct and converse effects as applied to the 
sensor and actuator functions of intelligent materials. 

TABLE 17 .1. Piezoelectric sensors and actuators 

Type Piezo- Input Output Applications 
effect 

Piezo Direct stress voltage sensors for mecha-
ceramic nicalloading 
(PZT)t 

Converse voltage strain actuators for 
deformation control 

Direct mechanical voltage sensors for static and dynamic 
Piezo loading loadings. Also, as passive 
electric (static and vibration absorbers 
polymer dynamic) 
(PVDF)tt 

Converse voltage strain strain rate 
control 

t Lead zirconate titanate piezoelectric ceramics 
tt Polyvinylidene fluoride 

Piezoelectrics as Sensors and Actuators 
As mentioned in the foregoing, mechanical displacement and electrical voltage are the 
varying parameters of the intelligent material when using piezoelectrics as sensors and 
actuators. Mechanical disturbance is converted into electrical voltage by a piezoelectric 
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sensor. On the other hand, a piezoelectric actuator is activated by an electrical input to 
produce specific mechanical effect (e.g., strain or vibrations) through proper control 
algorithms; e.g. Sung-Kyu eta/ (1991). Such mechanical effect would then be used to 
compensate or control undesired effects such as deflections, excessive vibrations caused 
by the external stimuli on the engineering material or structure with which the intelligent 
material is incorporated. Sung-Kyu eta/ (1991) and Honein eta/ (1991) have successfully 
demonstrated that this active mechanical control could be effected on laminated 
composites by the use of distributed piezoelectric materials. Fundamental relationships 
have been derived from the basic principles, presented by equations (17.1) to (17.8) 
presented in the foregoing. A 3-D Finite Element procedure was adopted and supported 
by experimental results. 

Piezoelectric-polymers as Intelligent Sensors and Actuators 
Polyvinylidene fluoride (PVDF) is a piezoelectric polymer that can be used for 
sensor/actuator functions. The piezoelectric polymer may be embedded inside a structural 
member to actively control, for instance, the vibrations by dissipating the elastic energy 
imposed on the member (see, e.g., Ramachandran eta/., 1990). For this, a long bar of test 
specimen coupled with a layer of piezoelectric polymeric substance has been considered, 
with the lateral dimensions much smaller than the length. The polar direction is taken 
along the length of the specimen. The attenuation of mechanical vibrations in a passive 
absorbing element has been studied. This attenuation is achieved by converting a large 
fraction of elastic energy into electrical energy using the piezo-electric coupling effect and 
then dissipating the electrical energy using a simple resistive element. For efficient 
damping characteristics,_ the coupling coefficients must be large. In order to determine the 
damping factor (tan o), constitutive equations of piezoelectric material coupled to the 
structural member were derived in a dynamic environment, where a harmonic plane wave 
propagating inside the material specimen has been considered. The results of the study 
indicate that it is possible to dissipate the mechanical vibratory energy imposed on the 
material through passive damping by piezoelectric polymers. It has also been proven 
through experimental work; e.g. Hagood et a/. (1988), that it is possible to shift the peak 
damping to the frequency range of interest. 

Active vibration control of a cantilever beam using distributed piezoelectric polymers and 
ceramics were studied by Honein eta/. (1991), Lee eta/. (1991) and Bailey and Hubbard 
(1985). All these studies included similar expressions derived from the fundamental 
principles of piezoelectricity, where piezoelectric sensors and actuators were used with a 
control algorithm to suppress the vibrational excitement. 

Strain-rate Control Algorithm 
Lee et a/. (1991) used a "strain-rate control feedback mechanism" for the control 
algorithm. Based on the linear piezoelectric theory, the one-dimensional electrical 
displacement D in a piezoelectric material can be related to the mechanical strain E in 
the same direction via the relationship: 
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D =dEE = eE (17.9) 

where d is the one-dimensional piezoelectric strain per charge constant, E is Young's 
modulus and e is the one-dimensional piezoelectric stress per charge constant. A 
piezoelectric polyvinylidene fluoride (PVF2) film was used in this work as both sensor and 
actuator. Using a current amplifier to interface with the high impedance output of the 
piezoelectric material, piezoelectric strain rate sensors were created. 

Bailey and Hubbard (1985), developed an active vibration damper for a cantilever 
beam using distributed parameter actuators on the basis of distributed parameter control 
theory. The distributed parameter actuator was the piezoelectric polymer (PVF2). The 
control algorithm for the damper was based on the work done by Kalmann and Bartram 
(1960) on "Lyapunov's second method" for distributed parameter systems. 

Numerous other articles have been published in the area of active vibration control of 
intelligent structures. Crawley and Luis (1987), for instance, have presented the use of 
piezoelectric actuators to suppress vibrational excitation in three different test specimens 
namely, aluminum, glass epoxy and graphite epoxy. Both analytical and experimental 
methods are presented and a scaling analysis has been performed to demonstrate the 
effectiveness in transmitting strain to the structure. Electronic damping of a large optical 
assembly has been studied by Forward eta/. (1983). In this, piezoelectric ceramic strain 
transducers were used as sensors and actuators and the data taken during the study 
indicate the effectiveness of the devices even at high levels of acoustic and vibrational 
noise. 

17.5. Optical Fibres as Sensors 

Optical fibres have been used effectively as sensors in intelligent materials. Optical fibres 
may be classified, in general, into the following two types. 

i) An extrinsic sensor which operates only as a transmitting medium 
for light but performs none of the sensing functions. 

ii) An intrinsic fibre optic sensor which utilizes some intrinsic property 
of the fibre to detect a phenomenon or to quantify a measurement. 
A list of intrinsically measurable variables through the use of optical 
fibres is given in Table 17.2. 

Glass and silica fibres form a basis for a broad range of sensors. The latter utilizes 
fibre properties to provide signals, indicative of external parameters such as force, 
temperature and deflection that are to be measured; e.g. Main ( 1985). The intrinsic 
properties of glass and silica qualify fibre optics as smart materials. Optical fibres are 
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capable of performing as a sensor as well as a transmitter of the sensor's signal. Claus et 
a/. (1988) developed an optical wave guide embedded in composites that can be used to 
determine the two-dimensional dynamic strain levels to which the material specimen is 
subjected to. This was carried out by using the change in the optical power transmitted in 
the fibre due to the induced strain in the structure and processing the resultant signal. 

17.6. Shape Memory Alloys (SMA) 

Shape Memory Alloys (SMA's) possess an interaction between the state of loading they 
are subjected to, the resulting strain and the thermal environment in which they are loaded. 
If these alloys are deformed at one temperature, they will completely recover their original 
shape when their thermal state is raised to a higher temperature. On the other hand, if the 
alloys are constrained during recovering, they can produce a mechanical effect (a recovery 
force) that is related to their temperature of transformation. Several alloy systems exhibit 
the phenomenon of shape memory (see, e.g., Wayman and Shimizu, 1972). A number of 
such alloy systems and their characteristics are given in Table 17.3. 

Variable 

Stress 

Strain 

Temperature 

TABLE 17 .2. Applications of optical fibres 

Methodology 

Photoelastic 
effect 

Change in optical 
power due to 
deformation 

Thermal change in 
refractive index 

Applications 

Fibre composites embedded with 
optical fibres can detect mechanical 
loading & vibrations 

Strain could be sensed in structures 
embedded with optical fibres 

Thermal state of fibre composites 
could be monitored during manu
facturing by embedded optical fibres 

Shape memory alloys have emerged as an alternative choice for situations involving 
dynamic control of large structures, which would often require vibration suppression and 
deflection control induced by adverse environment; e.g., Rogers et a/. (1988). The 
mechanical deformation and thermal cycling of a shape memory alloy is illustrated by a 
stress-strain-temperature diagram in Figure 17.3. 
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TABLE 17.3. Alloy systems exhibiting shape memory effect 

SME-alloy Transportation Recovery force for 
systems temp. 

. 
2% strain in Kglmm2 

Nitinol1 373 K 17 

Cu-Zn-AI2 350K 9 

CANTIM753 480K 14 

1 49.93% nickel and 50.03% titanium 
2 25.9% zinc, 4.04% aluminum and rest is copper 
3 11.68% aluminum, 5.03% nickel, 2.00% Manganese, 0.96% titanium 
and rest is copper 
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• Temperature of transformation depends upon the composites of the alloy system. 

As shown in Figure 17.3, the shape memory alloy is mechanically deformed to a plastic 
strain of 4% and the load is then removed (Curve OAB). To regain its original shape, the 
alloy is heated above its austenite end of transformation temperature Ar (Curve BCO'). 
The 4% strain is recovered between the temperatures of start and end of austenite 
transformation, A,. and Ar respectively. 

Figure 17.3. Stress-strain-temperature diagram for a SMA (After Wayman, 1989). 
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Martensite forms at a temperature below the temperature of martensite formation M, 
when the shape-memory alloy cools under no stress. Martensite can also form at 
temperatures above the temperature M, if a stress is applied at such temperatures and the 
formed martensite is termed as 'Stress Induced Martensite' (SIM). If the alloy is stressed 
at a temperature above that of austenite end of transformation Ar, the alloy goes into a 
super elastic loop (O'EFGO') as illustrated in Fig. 17.3. This means that the strain of 4% 
is recovered completely on removal of load and the material behaves perfectly elastic. 

The variation in the stress to produce SIM increases linearly with temperatures 
above M, and obeys the modified Claussius-Clayperon relationship; e.g. Wayman (1989). 

doa flH 

(17.10) 

In the equation above, o. is the applied stress above the Martensite formation temperature 
M, to induce SIM. 

e is the ambient temperature 
l>H is the latent heat of phase transformation and 
ETrans is the transformation strain of the super elastic loop 

So far, shape memory effect has been considered only as one way effect, where an 
SMA wire, for instance, deformed below the temperature of Martensitic end of 
transformation Mr temperature can regain its original shape when heated to a 
temperature above that of Ar- But when cooled again to the temperature of Martensite 
start of transformation M,, the wire's original shape remains and the material does not 
assume the 'deformed' shape. This is 'one way shape memory effect'. In the case of'two 
way shape memory effect', however, a deformed SMA material below Mr regains its 
undeformed configuration when heated to a temperature above the temperature of 
Austenite end of transformation Ar (see, e.g., Delaey et a!., 1974). However, the 
undeformed configuration spontaneously attains its deformed shape when cooled below 
Mr. The specimen can, however, recover its undeformed configuration if heated to 
temperatures above Ar. Thus, it is possible to produce two geometric configurations of 
the material, by subjecting it to thermal cycling. The latter is termed as the "trainability of 
two way shape memory effect"; e.g. Wayman, I 989. 

17.6.1. MATERIAL INTELLIGENCE USING SHAPE MEMORY ALLOYS 

Thermomechanical environment subjects materials to cyclic thermal loadings, leading to 
fatigue and other undesirable mechanical effects. If the shape memory material is made to 
alter its mechanical properties with respect to a mechanical loading, many of the induced 
strains could be controlled. In this case, the thermal environment is sensed by an 
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incorporated sensor and the SMA-material acts as an actuator by changing its mechanical 
response properties when heated (e.g., by passing an electric current through the SMA 
material). 

In a multi-layered composite laminate with embedded SMA-fibres, excellent 
vibration suppression could be achieved when the laminate is subjected to dynamic 
loading; e.g., Rogers et al. (1988). Varying the mode shapes of induced vibration could 
be also achieved by varying the stiffness of SMA-fibres. This is accomplished by utilizing 
the large force created on constraining the micromechanical phase transformation from 
deformed state to undeformed state. Figure 17.4 illustrates, for instance, the effect of 
temperature on the variation of stiffness of nitinol fibres. 
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Figure 17. 4. Approximate stiffness variation of Nitinol with temperature 
(After Jackson eta/. , 1972). 

It is also possible to use SMA-fibres as simple thermomechanical actuators rather 
than integrating them into a fibre-matrix system; e.g., Cross et al. (I 969) This is achieved 
by coupling the thermomechanical actuator to the structural member externally By 
ensuring proper coupling between the actuator and the structural member, the effects of 
the SMA actuator could be transferred to the parent material. Thus, shape memory alloys 
can be used effectively as actuators in intelligent materials when coupled with proper 
sensor and control algorithms. 
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17. 7. Shape Memory Polymers 

Polymeric materials are generally viscoelastic in response behaviour and have the 
capability (e.g., Figure 17.5) of changing their dynamic properties (storage modulus (E'), 
loss modulus (E") and loss tangent (tan&) with variations in environmental factors such as 
temperature, frequency and time; e.g. Ferry (1970), Murayama (1978), Nashif et. a!. 
(1985), and Corsaro and Sperling (1989). Thus, polymeric materials have the capability of 
smart materials. This is accomplished by a sensor/actuator mechanism that could be 
incorporated in a structural member so that external stimuli such as mechanical vibrations 
could be sensed. Through a suitable control mechanism, the dynamic moduli of the 
polymeric material could be made to change (to adapt itself to the new environment) (see, 
for instance, Ganeriwala and Hartung, 1989). This could be achieved by shifting the loss 
factor (tan &) towards the frequency spectrum that matches the imposed vibrational 
frequency, so that the absorption of the imposed vibrational frequency would be 
maximized. This shifting could be carried out by varying the loss modulus (E") or the loss 
factor (tan&) of the polymer damper with respect to temperature or frequency. 
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Figure 17.5. Schematic illustration of the variation of dynamic moduli of a polymer. 
Reprinted from Iyer, S. S. and Haddad, Y. M. (1994) Intelligent materials - An 
overview, Int. J. Pres. Ves. & Piping 58, 335-44 with kind permission of Elsevier 
Science Limited. 
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17.7.1. MECHANISM OF SHAPE MEMORY IN APOLYMER 

Shape memory polymers are unique polymeric materials which can recover their original 
shape before deformation at lower temperature (below the glass-transition temperature 
Tg), upon heating them to a temperature above T8 (see, e.g., Yoshiki and Shun-Ichi, 
1988). This is an apparent advantage over ordinary polymers. An ordinary polymer when 
stressed, may not recover completely to its original undeformed configuration if the stress 
is released, thus, resulting in permanent deformation. In a shape memory polymer, 
however, the recovery loop is completed upon heating. Thus, a shape memory polymer is 
able to revert back to its original shape without undergoing any permanent deformation. 

17.8. Electro-Rheological Fluids 

The viscosity of certain fluids is influenced by the applied electric field. This phenomenon, 
termed "Electroviscous EJjecf', was reported around the tum of the century; e.g. Duff 
(1896). Researchers; Andrade et a/ (1946), have found an increase in the viscosity of 
conducting polar liquids of up to 100%, upon application of electric fields of the order of 
1-10 KV/cm. For the electroviscous effect to occur, both polar molecules and conducting 
impurity ions are needed to be present. Large increases in viscosity, due to an applied 
electric field, for suspensions of finely divided solids in low viscosity oils was found as 
early as 1949. This effect termed as "Winslow EJjecf' is attributed to field induced fibre 
formation of the particles between the electrodes, thereby requiring additional shear stress 
for flow; e.g. Conrad and Sprecher, 1987. 

The above said phenomenon has recently been termed as "Electrorheology" (see, 
e.g., Gandhi and Thomson, 1988), and has been applied in the development of actuator 
mechanisms in intelligent materials. When used with suitable sensors and control 
algorithms, electrorheological fluids can be made to change their properties by the 
application of electric field upon them. 

The electrorheological behaviour of a suspension of fine silica particles in 
napthenic acid is governed by the Newtonian fluid flow principle (without an externally 
applied electric field). This principle is expressed as, 

"t = rr( 

where 

t is the applied shear stress 
y is the shear strain rate and 
11 is the Newtonian viscosity 
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When an electric field (~) is applied, the shear stress (1:) was found to increase to 
a critical value (1:c) which must be overcome before any significant flow of the fluid 
occurs; e.g., Klass and Martinek (1967) and Uejima (1972). That is, 

(17.11) 

where 'tc is independent of y, but increases with ~. 

Klass and Martinek (1967) used suspensions of silica particles in napthenic acid, 
and Uejima ( 1972) used cellulose in insulator oil to verifY this phenomenon 
experimentally. The experimental verification indicates that t c is proportional to the 
square of the field, i.e., 1:c "' ~2 . In the electrorheology phenomenon, the magnitude of 
electric field is the important parameter rather than, for instance, the spacing between the 
electrodes (see, for example, Conrad and Sprecher ( 1987). 

17.8.1. MATERIAL INTELLIGENCE USING ELECTRO-RHEOLOGICAL FLUIDS 

With reference to Fig. 17.6, a mechanical structural member which contains 
electrorheological fluid, when not activated, has a very low composite stiffness. This state 
represents the undisturbed configuration. 
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Figure 17. 6. Electrorheological fluid as an actuator in a smart beam. Reprinted from 
Iyer, S. S. and Haddad, Y. M. (1994) Intelligent materials - An overview, Im. J. Pres. 
Ves. & Piping 58, 335-44 with kind pennission of Elsevier Science Limited. 
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When an environmental input (e.g. mechanical loading or a difference in thermal 
gradient) causes, for instance, deflection in the structural member, it would be desirable to 
increase the stiffness to control the deflection. This is achieved by sensing the external 
mechanical loading through incorporated sensors. The sensed signal is then processed in a 
microprocessor, which activates an auxiliary electric input to produce a desirable voltage. 
This voltage, when applied to the electrorheological fluid contained in the mechanical 
structural member, increases the viscosity of the fluid, thus, practically converting it into a 
solid. As a result, the overall stiffness of the specimen is increased, resisting the external 
loading and preventing deformation. The above said process could be made to take place 
in l/10001h of a second. Experimental investigations conducted, for instance, by Gandhi 
and Thompson (1988) have verified the concept of electro-rheological fluids as intelligent 
material actuators. These authors were able to illustrate that robot arms could be made 
adaptable to external loading via changing its stiffness. 
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As demonstrated in this chapter, smart materials have the ability to improve mechanical 
structures to be more advanced and reliable. Although the concepts of the techniques described 
in this article were discovered decades ago, only recently that such techniques have emerged as 
potential constituents in intelligent materials methodology. The formulations for piezoelectrics 
indicate the nature of direct and converse effects and their possible use in sensor and actuator 
technologies. Discussions relating to shape memory alloys, shape memory polymers and 
electrorheological fluids, illustrate the usage of these materials as actuators in smart material 
systems. The increase in stiffness of shape memory alloys and the change in the dynamic moduli 
of shape memory polymers with temperature offers distinct advantages in controlling the static 
and dynamic state of mechanical structures. Also the development of different feed back 
mechanisms based on control algorithms and the increase in sophistication of microprocessor 
technology and pattern recognition methodology will definitely play an important role in the 
advancement of processor function. 
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CHAPTER18 

PATTERN RECOGNITION AND CLASSIFICATION METHODOLOGY 
FOR THE CHARACTERIZATION OF MATERIAL RESPONSE STATES 

18.1. Introduction 

In the present Chapter, we discuss the design procedure of a computer-based expert 
system, in conjunction with a non-destructive quantitative examination technique, e.g., 
acousto-ultrasonics, for the identification of material response states. 

Acousto-ultrasonics (AU) is a relatively new quantitative non-destructive exam
ination technique that combines aspects of conventional "Ultrasonic" and "Acoustic 
Emission" practices. It has been proven to be a suitable approach to quantity 
microstructural and morphological states of materials and the related mechanical prop
erties (e.g., Tanary eta/., 1992, and Haddad and Iyer, 1995&1996). 

Acousto-ultrasonics may be interpreted as "acoustic emission simulation with 
ultrasonic sources" (Vary, 1987). In the acousto-ultrasonic technique, stress waves are 
"simulated' to resemble acoustic emission waves, but without disrupting the material, i.e., 
without the application of an external loading (Vary, 1988). The working hypothesis of 
the acousto-ultrasonic technique may be stated as: 

"More efficient stress-energy transfer and strain redistribution, in the 
microstructure of the material specimen, during mechanical loading, 
would correspond to an enhanced mechanical strength of such materiaf'. 

In the AU practice, the multi-interactions of the ultrasonic-wave with the material 
microstructure usually result in complicated waveforms that are quite difficult to analyse. 
A relatively new approach to the analysis of AU signals is the use of"Pattern-recognition 
and Classification Methodologies". In this approach, acousto-ultrasonic waveforms are 
identified as belonging to a class, where each class represents one of different states of the 
tested material-property. For this purpose, each waveform is mathematically treated as a 
multi-parametric entity, which is called a ''pattern vector". 

Each component of such a pattern vector represents a value of a parameter, also 
called ''feature", which is used for the identification of the AU signal. In the pattern
recognition (PR) practice, a computer-based pattern-recognition system, labelled 
"Pattern-recognition Classifier", is designed on the basis of AU signals pertaining to 
known material states. 

Classification of unknown patterns is based on the so-called "decision functions"
There are two main approaches to generate these decision functions, i.e., deterministic 
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and statistical. The deterministic approach comprises decision rules that are established 
by the assumption that a minimum of a function of a so-called "generalized distance" 
between a pattern of values (outputs) of a particular event and various known classes of 
such an event indicates that the pattern belongs to the class indicated by the minimum of 
the said function (e.g., Tou and Gonzalez, 1974). The statistical approach, however, is 
based on the maximization of the probability of classifying a pattern as belonging to a 
particular class, when it appears to belong, at the same time, to another class (e.g, Fu, 
1976). 

Decision functions are usually determined by limited-size samples of pattern vec
tors that are selected for the design of the Pattern-recognition system. In this context, 
arbitrary decision functions are initially assumed and, then, through a sequence of iterative 
learning steps, these decision functions are made to approach satisfactory forms. This 
procedure is called "Learning and Hstimation" of decision functions (e.g., Andrews, 1972, 
Chen, 1982 and Devijver, 1982) The technique has been recently used (e.g., Haddad and 
Iyer, 1995&1996, and Molina and Haddad, 1995&1996) to test solid polymers, which 
characteristically show high attenuation of ultrasonic waves. 

18.2. The Acousto-Uitrasonics Technique 

In the AU practice, f;'jf.,ILtre 18. 1, a broadband transducer inputs a repetitive series of 
ultrasonic pulses into the test specimen. A receiving transducer, located at a specific 
distance from the sending transducer, captures the already transmitted wave. Both trans
ducers are coupled at normal incidence to the surface of the specimen. The transmitted 
ultrasonic wave into the material specimen is considered to be affected by the 
microstructural and morphological properties of the material specimen that determine its 
mechanical performance. Accordingly, it is postulated that the captured AU signal would 
contain information concerning the overall mechanical response of the material specimen. 
Although a number of test configurations are possible, the most desired experimental 
configuration is the one in which the sending and receiving transducers are located on the 
same side of the specimen, as demonstrated in Fig. 18.1 This configuration is advanta
geous when inspecting, for instance, components of a large structure in service. Experi
mental work on solid polymers by, for instance, Lee and Williams (1991) and Iyer and 
Haddad (1993), on metals by Tanary (1988), and on different classes of composites by 
Vary (1982) and Williams and Lampert ( 1980) revealed the convenience of using the AU 
transducer configuration described above (Fig. 18.1 ). 

Although the transmitting transducer injects longitudinal waves normal to the 
specimen surface, the sound waves radiated into the material produce oblique reflections 
and shear waves. The resultant stress waves, which consist of longitudinal and transverse 
components, propagate in the material specimen interacting with a significant portion of 
the microstructure along their path. In many situations, as discussed in the foregoing, it is 
possible to obtain information on the mechanical behaviour of the material from the AU 
wave propagation data. In this context, acousto-ultrasonic waveforms have been shown 
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to be sensitive to interlaminar and adhesive bond-strength variations (Tanary, 1988). 
Acousto-ultrasonics have been proven to be useful in assessing micro-porosity and micro
cracking produced by fatigue cycling (Williams and Lampert, 1980). The technique has 
been also used in estimating the variation in strength of structural composites (Vary, 
1987), as well as, in the evaluation of their residual strength and degradation due to cyclic 
fatigue and impact (Nayeb-Heshmi et a!., 1986). The technique has been further used in 
determining the strength of wire ropes (Dos Reis and McFarland, 1986), the tensile 
strength of nylon ropes (Williams et a!., 1984) and in the prediction of the filler content in 
wood and paper products (Dos Reis and McFarland, 1986). Strength of ceramic materials 
and the effect of hydrothermal aging on composites have been, also, evaluated successfully 
using the acousto-ultrasonic approach (Phani eta!., 1986). 

Clamps 

Emitter Transducer 

Rubber-foam Pad 

Figure 18.1. AU-transducer setup. "Reprinted from Molina, G. J. and Haddad, Y. M. 
( 1995) On the identification of residual impact properties of materials by acousto
ultrasonics - A pattern recognition approach, Acta Mechanica Sinica , Vol 11, No. 1, 
February 1995, 34-43, with kind permission from Allerton Press, Inc." 

As illustrated in Figure 18.2, the pulsar-sender is a printed circuit board capable of 
pulse generation. It emits electric voltage pulses to the piezoelectric transducer at a 
predetermined rate resulting in acoustic pressure waves that have frequencies in the ultra
sonic range of 1-20 MHz. As mentioned in the foregoing, the emitted wave is to interact 
with the microstructure of the material before being captured by the receiving transducer. 
As shown in Fig. 18.2, the pulsar-sender is connected to the pre-amplifier and, in turn, to 
an acoustic emission (AE) testing facility. The AE facility receives the captured wave
form, converts the signal from an analog to a digital form and, then, transfers the data to a 
digitization board. The latter possesses a signal processing capability. It digitizes the 
signal with the use of a specialized real-time data acquisition and signal processing soft
ware. As soon as a signal is digitized, the digitizer triggers the pulsar again to send an
other input-wave which interacts with the material and the sequence of operations men-
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tioned above are repeated. After digitization, waveforms are stored electronically in 
separate data files for later analysis. 

Emitter 
Tr~r~sclucer 

R.ulvlng 
TraMducocr 

Figure 18.2. A schematic diagram of the acousto-ultrasonic test set-up. "Reprinted from 
Int. J. Pres. Ves. & Piping 67, Molina, G. 1. and Haddad, Y. M. , Acousto-ultrasonics 
approach to the characterization of impact properties of a class of engineering materials 
(1996), 307-15, with kind permission from Elsevier Science" . 

The rate of emission of input pulses is determined by a 'repetition rate utility' 
which is operated by the controlling software. The latter initiates the waveform genera
tion and reception. A properly designed software should, also, allow easy selection of 
threshold setting, gain, damping, frequency, etc. 

A major concern with any quantitative non-destructive evaluation technique, such 
as Acousto-ultrasonics, is the reproducibility of measured data. A rational approach to the 
design of a suitable setup for AU data acquisition is a customized trial under the guide of 
previous research; see, for instance, Iyer ( 1993), Russell-Floyd and Phillips (1988), and 
Tanary (1988). 

Acousto-Ultrasonic Parameter 
A quantifying parameter to interpret the information contained in the received acousto
ultrasonic signal was originally proposed by Williams and Lampert (1980) and was adopt-
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ed for the verification of the characterization of the mechanical performance of a class of 
materials by Tanary (I 988), Tanary eta!. (I 992) and Iyer (I 993). It is referred to as the 
'Acousto-Ultrasonic Parameter (AUP)' and is interpreted in the present work, with 
reference to Fig. 18.3, as follows 

p 

AUP(V,) = :L vi(ci- ci ,1) 
/ 0 0 

(18.1) 

where 

V; is the voltage at the ith level above threshold, 
C; designates the number of counts at the ith level, and 
VP denotes the peak amplitude of the waveform. 

The acousto-ultrasonic parameter, as identified by Eqn. ( 18.1) above, is seen in the pres
ent work as an identification property of the wave propagation characteristics of the 
materiaL 

Volts 

V4 (C4 =0) 

v3 (C3 = 2) 

v2 (C2 = 4) 

V1 (C 1 = 6) 

AUP = r V; (C; • Ci+1) 

v1 (c1 -c2) + 
v2 (C2 · c3) + 
V3 (C3 · C4). 

Figure 18.3. Calculation of the acousto-ultrasonic parameter (AUP). "Reprinted from 
Tanary, S. , Haddad, Y. M .. Fahr. A and Lee. S. (1992) Nondestructive evaluation of 
adhesively bonded joints in graphite/epoxy composites using acousto-ultrasonics. Jour
nal of Pressure Vessel Technology, Transactions of the ASME. August 1992, VoL 114, 
345-52, with kind permission of ASME" 
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Factors Affecting Acousto-ultrasonic Waveform Measurement 
Other than material property variations, several important parameters relating to the 
experiment set-up would affect the waveform. These parameters may be grouped as 
"externaf' to the testing system, e.g., the pressure applied on the transducers, the type of 
couplant, between the transducers and the test specimen, and the distance between the 
transducers, and "internal" in the testing system, e g., the frequency of the propagating 
wave, 'gain' used to amplifY the signal and the threshold voltage above which the signal is 
digitized (Russel-Floyd and Philips, 1988). These parameters and their effects on AU 
wave form are discussed, for instance, by Tanary 11988), Iyer (1993) and Molina (1994). 

External Parameters. The type of couplant used to create continuity between the trans
ducers and the test specimen is an important factor that affects the resultant waveform. 
Figure 184 presents experimental data (e.g., Haddad and Iyer, 1995) concerning the 
reproducibility of the acousto-ultrasonic results and the clarity of the transmitted signals 
for three different types of couplant, namely, acoustic emission gel SC-2, water and petro
leum jelly. It is seen, from the latter figure, that, for the case of solid polyvinylchloride, 
tested at room temperature, the couplant SC-2 gives high and consistent readings of AUP. 
Such readings should also fall well within the calibration range ofthe instrumental setting. 
These results have also shown to be valid when testing other classes of materials including 
metals ( e g., Tanary, 1988) and polymeric base composite materials ( e g., Molina, 1994 ). 

The change in distance between the sending and receiving transducers would also 
affect the test results quite significantly, as it corresponds to the extent of the material 
microstructure being examined by the travelling ultrasonic waveform An illustrative 
example of the variation of AUP with the distance between the sender and receiver trans
ducers is shown in Fig. 18.5 for the case of solid Polyvinylchloride tested at room temper
ature; e.g., Molina, 1994. Similar to the parameters mentioned above, the pressure ap
plied on the transducers is an important factor that would affect the experimental data 
obtained. It was reported in the literature, e g , Henneke (1983), that for repeated AU 
measurements, large loads (as much as 20 lbs.) could be applied to the transducers. In the 
experimental work of Iyer and Haddad (1993) and Molina and Haddad (1995, 1996), for 
instance, it is indicated that the load should be applied uniformly with a magnitude just 
sufficient to eliminate unwanted reverberations within the couplant (see, also, Tanary et 
a!., !992) 

Internal Parameters. The acousto-ultrasonic waveform is influenced by internal factors 
concerning the experimental hardware setting, such as gain and frequency of the injected 
wave. Following the discussions given by Tanary (1988) and Tanary eta!., (1992), an 
optimization of the instrumental setting should be carried out to find the best combination 
of transmitting frequency and amplitude gain. Thus, the system gain would be selected on 
the basis of sensitivity of the transmitting and receiving transducers. In the experimental 
work presented here, the set value is chosen, so that the signal to noise ratio is sufficiently 
high, while, the maximum signal amplitude is to be held below the saturation level of the 
receiving instruments. In this context, the frequency of the acousto-ultrasonic waveform 
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should be set at a value which would result in optimum conditions for acousto-ultrasonic 
measurements. Further, this frequency should fall well within the band width of the broad 
band pulsar and receiving transducers. This consequently enables the sampling rate to be 
set at a reasonably high level and would still capture a significant number of waveforms 
without exceeding the memory space of the digitizer (e.g., Finkel, 1975, and Haddad and 
Iyer 1995&1996). 
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Figure 18. 4. Variation of the acousto-ultrasonic parameter with couplant type. Material: 
solid Polyvinylchloride (PVC), tested at room temperature. "Reprinted from Int. J. Pres. 
Ves. & Piping 63, Haddad, Y. M. and lyer, S. S., An Acousto-ultrasonics pattern recog
nition approach for the mechanical characterization of engineering materials, 89-98 
(1995), with kind permission from Elsevier Science". 

800 

* :j: 

* :j: Ill 

* 
:j: 

600 + 
! 

X2 + 

* l 0 Aver•ge AUP 400 
• St~detd deviation 

200 

0+-------~----~-------+--~ 
0 0.6 1.6 

Xt 

X 1 : Distance between transducers in inches. 
X2 : Acousto-Uitrasonics Parameter CAUPI in mVqlts. 

Figure 18.5. Sensitivity of AU measurements to distance between transducers. Material: 
solid Polyvinylchloride (PVC), tested at room temperature (Molina, 1994). 
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18.3. Fundamentals of the Design of Pattern-Recognition (PR) Systems 

In statistical pattern recognition (e.g., Andrews, 1972 and Tou et al., 1974), pattern 
values are classified into their respective classes by plotting their common feature values in 
a 'feature space'. The latter is an Euclidean space where the coordinate axes represent the 
common features of interest to the problem being analysed. The design of a pattern rec
ognition system generally involves the following three steps: 

Step! 
This step is concerned with the representation of input data which can be 
measured concerning the state of the material that is required to be recog
nized. The AU signal provides the raw data values that are necessary for 
the pattern classification process. Each point of the signal would be a 
characteristic feature in the time domain. However, the primitive measure
ments of the acousto-ultrasonic waveform could become very large. As 
stipulated in the foregoing, each of such primitive measurements would 
carry a 'small portion' of 'information' about the microstructure of the 
material which had been interrogated by the AU wave (e.g., Haddad and 
Iyer, 1993) .. 

Step// 
Due to the large number of variables involved, it becomes necessary to 
'extract' important 'features' from the primitive measurements. Each of the 
selected features would carry a small, but significant information for classi
fication purposes and would be selected according to the physics of the 
problem. This is achieved through a process known as the 'feature extrac
tion' process. The latter constitutes the present Step II. In a typical study, 
the adopted software extracts in excess of 100 standard features that could 
be used for wave-form analysis. 

Step!!/ 
The third step in pattern-recognition system design involves an optimum 
decision procedure associated with the classification process. On assum
ing, for instance, that a machine is to be designed to recognize 'M' different 
pattern classes denoted, for instance, by w~>w2, ... , ~, then, the pattern 
space can be considered as consisting of M regions, each of which encloses 
the pattern points of a class wi (i = 1,2, ... , M). The recognition problem 
can, then, be viewed as that of generating the decision boundaries which 
separate the referred-to 'M' pattern-classes on the basis of the observed 
measurements. In Pattern Recognition, decision functions are established 
by the so-called "learning and estimation" procedures They are imple
mented by means of a computer-based set of rules which constitutes the 
pertaining "Pattern Recognition Classifier". Examples of decision func-
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tions which may be employed in the design of corresponding PR-classifiers 
are: 

(I) Empirical Bayesian, 
(II) Linear Discriminant, 
(III) K-Nearest Neighbour, and 
(IV) Minimum Distance Classifier. 

Figure 18.6 illustrates the concepts of the decision functions based on the classification 
schemes mentioned above (e.g., Haddad and lyer, 1995&1996). Meanwhile, the reader is 
referred to lyer (1993) and Molina (1994), among others, for details concerning these 
classification schemes. 

For the purpose of establishing the set of sample patterns of known classification, 
the software is to be designed to split the input data values into two separate files after 
normalizing the data with respect, for instance, to its variance. The first file contains the 
values of the normalized feature values which are used to create the boundary between the 
pattern classes. Once the boundary is established, the classifier is evaluated using the data 
contained in the second file. The results ofthe "training" and "evaluation" processes are 
expressed as percentage of success in forming distinct clusters in the feature space from 
the known pattern values. The predictability of such a classifier is tested using a raw data 
set taken from an unknown sample of relevant input data whose values could be deter
mined by an alternative technique. 

Thus, the task of a pattern-recognition system may be defined as "the categoriza
tion of input data into identifiable classes via the extraction of significant features or 
attributes from a background of relevant data". Operationally speaking, a PR System 
would perform the following transformation 

P ~ F ~ C s s s (18.2) 

where the "Pattern-Space P," comprises the sets of feature values, also called primitive 
pattern vectors, which are extracted from either analogical or digitized descriptions of the 
material response states to be recognized; the "Feature Space F," comprises the pattern 
vectors formed by a selection of the features which carry the discriminatory power be
tween classes for the given problem; and the "Classification Space c. " is a frame of 
defined classes where a pattern of unknown classification is identified as belonging to a 
known class. The design of a "Pattern Recognition System" is the building of a series of 
procedures to perform this transformation. 

18.3.1. FEATURE EXTRACTION AND NORMALIZATION 

Figure 18.7 presents schematics of the procedure employed to perform the partial trans
formation from Pattern Space (P,) to Feature Space (F.). With reference to Figure 18.7, 
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AU signals pertaining to each class are divided in two sets; namely, "Classifier" and 
"Testing Sets". Classifier Sets are used for building the classifier, as well as for further 
testing of the "Training" and "Evaluation" performances of the designed classifier. Test
ing Sets are used for testing of the "Classification Performance". 
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Figure 18.6. Two-parameter acousto-ultrasonic wave classification: (a) a simple decision 
function for two pattern classes; (b) the proximity concept as a classifier; (c) nearest 
neighbour classifier; (d) a schematic illustration of the empirical Bayesian classifier. 
(w1: a class of undamaged material states; w2: a class of damaged material states; x1: 

peak amplitude of the acousto-ultrasonic waveform; x2 : inter-peak distance of the 
acousto-ultrasonic waveform). "Reprinted from Int. J. Pres. Ves. & Piping 63, Haddad, 
Y. M. and Iyer, S. S., An Acousto-ultrasonics pattern recognition approach for the 
mechanical characterization of engineering materials, 89-98 (1995), with kind permis
sion from Elsevier Science". 
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To carry out the feature extraction and normalization procedures, both Classifier 
and Testing sets have to be arranged as "File-Trees", respectively called "Classifier Trees" 
and "Normalization Trees", which correlate together the AU signals which are stored as 
computer files. A file tree is "an arrangement of the records of digitized AU signals in 
related classes by means of a root Organization File". An example of a Classifier Tree 
for the building of classifiers is presented in Figure 18.8. With reference to the latter 
figure, each class of the Classifier Tree comprises a limited number of specimens, each of 
them is represented by a number of AU-signal records taken successively at small time 
intervals, e.g., of one second. 

CLASSIFIER 
TREE 

Orsanization File 

ClaBBifier Sets 

· Trainins FUes 
o£ Normalized 

Features-Values 
A I B I C 

Evaluation Files 
o£ Normalized 

Featur•Values 
A I B I C 

Testins Sets 

NORMALIZATION 
TREES 

Organization Files · 

B 

Testins Files 

Figure 18. 7. Schematics of the feature extraction and normalization procedures. "Re
printed from Molina, G. J. and Haddad, Y. M. (1995) On the identification of residual 
impact properties of materials by acousto-ultrasonics - A pattern recognition approach, 
Acta Mechanica Sinica, Vol 11, No. 1, February 1995, 34-43, with kind permission 
from Allerton Press, Inc.". 
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Figure 18.8. Classifier Tree. Arrangement of AU-records pertaining to classifier sets. 
"Reprinted from Molina, G. J. and Haddad, Y. M. (1995) On the identification of resid
ual impact properties of materials by acousto-ultrasonics - A pattern recognition ap
proach, Acta Mechanica Sinica, Vol 11, No. 1, February 1995, 34-43, with kind per
mission from Allerton Press, Inc." . 
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The software, designed for the purpose of this study, extracts 108 feature-values 
from each digitized record of an AU-signal. These values are of diverse order of magni
tude in five domains of wave-description (i.e., Time, Frequency, Phase, Cepstral and 
Auto-correlation domains). Hence, Feature normalization is necessary so that the 
involved features would have comparable values in the dealt with "n-feature space". 
Feature normalization may be performed by means, for instance, of the Method of Zero
Mean Unit-Variance Mapping; e.g, Iyer (1993), and Haddad and Iyer, 1995 &1996. In 
the referred-to method, a normalized feature value ~i for feature j is obtained from the 
non-normalized value xi of a pattern vector x as follows 

X - IJ 
~ = _)_ 
') s (18.3) 

where 1-1 is the mean of the values of the j-feature for all pattern vectors being investi
gated; and s is the standard deviation of the values of the j-feature for all classes under 
consideration. This means that for a multiple class problem, the "global mean" of all 
values of the j-feature is used as the referrd-to mean J-1, while the average of the standard 
deviation values for all the classes is taken as s. Normalized values will be loosely 
bounded to the range ( -1 , I), measured in standard deviation units. 

As it is shown in Fig. 18.7, the "Classifier" and "Testing" sets are subjected to the 
successive operations of "Feature Extraction", "Feature Normalization" and, when it 
applies, "Feature-value Splitting' . Feature-value Splitting has the purpose of obtaining 
two files of records representing the same AU signals for the Training and Evaluation of 
the classifiers, as it is explained in the following sub-section. 
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18.3.2. FEATURE SELECTION AND CLASSIFIER BUILDING 

Figure 18.9 presents schematics of the procedure used in the present study for building 
and testing of classifiers by means of feature files. This procedure corresponds to the 
partial transformation from the "Feature Space" to the "Classification Space". 

With the possible availability of a significantly large number offeatures for describ
ing the AU signal, the problem of selecting an optimal set of best discriminating features 
could be very complex. To solve the problem of feature selection, a procedure may be 
established for the design of a classifier that would give the highest average of the classifi
cation performance for the classes being considered. For each particular classification 
problem, it is possible to establish a ranking of the feature's discriminating-ability between 
classes. In this context, for instance, the 'Fisher Distance', also called the 'Fisher Discrim
inatory Ratio', may be used for ranking the involved features; e.g., Iyer (1993). 

For each type of classifier, the selection of features is guided by strictly following 
the adopted rule of ranking. Thus, no isolated features are chosen. Instead, only com
plete ranking-series may be taken. The procedure adopted for the design of one type of 
classifier is carried out in building a series of classifiers of this type by starting with the 
classifier designed by using the first-ranked feature only. Classifiers of the same type are, 
then, obtained by adding features from the succession already determined by the ranking 
series. The so-called ''performance-classification" by means of the 'Testing Sets' are then 
experimentally obtained for the designed series of classifiers. In the feature selection 
procedure, the number of features that gives the highest average ofthe obtained classifica
tion performance may be chosen to design the most appropriate classifier for a given 
classification problem. 

r-;~..:;~.~-1 r;:~.:;-.;:. ... ::-.-1 
1 Performance& 1 1 Perform&ncu 1 

L----------.J L--------------J 

Figure 18. 9. Procedures for building and testing of classifiers. "Reprinted from Molina, 
G. J. and Haddad, Y. M. (1995) On the identification of residual impact properties of 
materials by acousto-ultrasonics - A pattern recognition approach, Acta Mechanica 
Sinica, Vol 11, No. 1, February 1995, 34-43, with kind permission from Allerton Press, 
Inc.". 
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18.3.3. TRAINING AND PERFORMANCE EVALUATION OF THE CLASSIFIER 

As discussed earlier in this chapter, the designed classifiers work on the basis of 'decision 
functions'. The ability of these decision functions to distinguish between the same 
digitized records, used to build them, can be expressed as the percentage of correctly 
classified records. Since this percentage represents the effectiveness of the training of the 
classifier to recognize the AU signals used, it is referred to as the "training' performance. 

A classifier may, also, be evaluated by the percentage of correct classification 
when classifying AU records obtained from the same specimens which were used in 
building the classifier. This percentage may be referred-to as "Evaluation" performance. 
The used procedure for testing the "Training' and "Evaluation" performances of a classi
fier is displayed in Figure 18.9. 

18.4. Illustrative Applications 

18.4.1. CHARACTERIZATION OF THE STRESS-RELAXATION RESPONSE 

In this subsection, we present a case study concerning the use of the acousto-ultrasonic 
technique, in conjunction with statistical pattern recognition, to characterize the stress
relaxation response of a class of linear viscoelastic material; namely, solid Polycarbonate 
(PC), tested at room temperature. In this context, the value of the time-dependent "re
laxed' stress is correlated with the "acousto-ultrasonic parameter (A UP)", introduced 
earlier by Eqn. (18.1 ), for different strain input levels. Statistical pattern recognition 
methodology, as described earlier in the previous section, is used to build a classifier for 
different "relaxed' stress states. 

When employed for the case of a linear viscoelastic material, suitably at different 
times under a given level of strain input, the resultant acousto-ultrasonic waves would 
contain 'features' pertaining to the time-dependent macro-mechanical property of stress
relaxation of such material. This poses a typical statistical pattern classification problem. 
The various material stress-relaxation states characterized by the particular features of the 
pertaining ultrasonic waveforms would form distinct clusters in an n-dimensional feature 
space. An unknown stress-relaxation response state of a specimen may then be matched 
to one of the clusters and classified as being the respective material stress state. 

Experimental Procedure and Results 
An uniaxially loaded test specimen configuration of Polycarbonate (PC) is adopted for 
performing the required stress-relaxation experiments. The material test specimens were 
prepared as per ASTM D-638. Stress-relaxation tests were carried out under constant 
strain levels of 0. 01, 0. 02, ... , 0. 07. The corresponding experimental relaxation curves are 
shown in Fig. 18.10. AU measurements were taken from material specimens already 
undergone stress relaxation experiments corresponding to the three strain levels 4%, 5% 
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and 6%, for the successive time intervals of 1,10,100,1000,10000 and 100000 sec., for 
each of the mentioned strain levels. For each considered stress state, five material speci
mens were tested. The different parameters concerning AU measurements and the values 
ofthese parameters, as considered in the present work, are outlined in Table 18.1. 
The acousto-ultrasonic parameter (AUP) was calculated for each AU measurement in 
accordance with Eqn. (18.1 ). It is, then, normalized for each testing time interval t with 
respect to the maximum of the average values at the same time interval t, for the five 
specimens tested at this state. The normalization of AUP is carried out, in accordance to 
the following expression in order to eliminate the effect of possible material variations 
between the five tested material specimens. 

A UP (t) I = A UP measured at a relaxed stress state at time t 
norm , Maximum of the average values of A UP for specimens tested at time t 

(18.4) 

where A UP norm(t) IE is the normalized value of the acousto-ultrasonic parameter at time 
under a particular level of strain input e. 
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Figure 18.1 0. Stress-relaxation of solid polycarbonate (PC) at room temperature. "Re
printed from Mechanics of Materials 24, Haddad, Y. M. and Iyer, S. S., On the charac
terization of the stress-relaxation response of a class of linear viscoelastic material using 
acousto-ultrasonics: A pattern recognition approach, 199-211(1996), with kind permis
sion from Elsevier Science". 
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TABLE 18.1. Factors affecting acousto-ultrasonic waveform measurement. Material: 
Solid Polycarbonate (PC); tested at room temperature (Haddad and Iyer, 1996) 

Factor 

Pressure on the transducer 

Couplant 

Distance between the transduc
ers 

Internal parameters of experi
mental set-up 

Method adopted in the present research 

Constant force clamps were used to obtain 
reproducible results; see Tanary (1988). 
Acoustic emission gel (SC-2) was chosen to 
obtain high, but consistent readings of AUP; 
see Iyer (1993). 
25.4 mm was chosen to obtain high readings 
of AUP that would still fall within the calibra
tion level of the instrumentation, see Iyer 
(1993). 
A frequency of750 KHz and a sampling rate 
of 3.125 l\1Hz with a gain of 60 decibels 
were chosen. 

437 

The magnitude of the "relaxed' stress in the material, for each testing time interval t, is 
also normalized with respect to the maximum of the average of its values obtained, at the 
same testing time interval t, for the five specimens tested at the particular strain level 
considered. It is expressed as 

Value of the "relaxed'' stress in the specimen at time t 
Maximum of the average of "relaxed'' stresses in the specimens tested attime t 

(18.5) 

where onorm(t) I c is the normalized value of the "relaxed' stress at time t under a par
ticular level of strain input e 

Fig. 18.11 illustrates the correlations between the 'normalized acousto-ultrasonic 
parameter', Eqn. (18.4), and the corresponding 'normalized relaxed stress', Eqn. (18.5), 
for the same "relaxed" stress state, i.e., at the same time for each of the strain levels 
considered. As shown in Fig. 18.11, for all strain levels considered, the value of the nor
malized AUP(t) increases linearly as the stress in the material relaxes at a constant strain 
level. 

For the purpose of distinguishing between material states, three pattern classes were 
chosen for designing a pattern classifier. They are represented by the resultant acousto
ultrasonic waveforms belonging to three different stress states corresponding to time 
intervals: I, 10000, and 100000 sec. These stress states are referred to, respectively as 
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Class I, Class 2 and Class 3. The acousto-ultrasonic waveform characteristics obtained 
at these three stress states represent the raw data values for the pattern recognition analy
sis. 

As discussed in the foregoing, important features that can readily distinguish a 
given waveform from other waveforms are ranked in order of their discriminatory power 
according to the problem being analysed. These selected features represent values in 
various domains whose units of measurement are different. Thus, a normalization process 
is initiated that normalizes the feature values of each of the class with respect to its mean 
and variance; e.g., lyer (1993) and Haddad and Iyer (1995, 1996). 
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Figure 18.11. Correlation between AUP and 'relaxed stress at different times for strain 
levels of 4%, 5% and 6%. Material: Solid Polycarbonate (PC); tested at room 
temperature. "Reprinted from Mechanics of Materials 24, Haddad, Y. M. and Iyer, S. 
S., On the characterization of the stress-relaxation response of a class of linear 
viscoelastic material using acousto-ultrasonics: A pattern recognition approach, 199-
211(1996), with kind permission from Elsevier Science". 

The pattern classification approach that may be undertaken would depend on a prior 
knowledge of the decision boundaries between the different classes under consideration. 
For the purpose of designing a classifier, the normalized feature vectors are further split 
into training files and evaluation files. The normalized feature values of acousto-ultrasonic 
waveform obtained from two of the five specimens, tested at a particular relaxed stress 
state, were treated as 'unknown specimens' and the acousto-ultrasonic waveforms obtained 
from them were used for testing the designed classifier. Each of Figures 18 .12, 18. 13 and 
18.14 illustrates a two-dimensional feature space. The latter is an Euclidean feature space 
where the x-axis represents a selected feature and they-axis represents another feature for 
the purpose of classification. The adopted features are selected through different 'itera
tions' based on the extent of separation of 'clusters of pattern vectors' belonging to the 
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three pattern classes. Table 18.2 presents a list offeatures selected for the purpose of the 
present case study. 
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Figure 18.12. Feature-Feature projection for two of the selected features for 4% strain 
level Material: Solid Polycarbonate (PC); tested at room temperature. "Reprinted from 
Mechanics of Materials 24, Haddad, Y. M. and Iyer, S. S., On the characterization of 
the stress-relaxation response of a class of linear viscoelastic material using acousto
ultrasonics: A pattern recognition approach, 199-211(1996), with kind permission from 
Elsevier Science". 
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Figure 18.13. Feature-Feature projection for two of the selected features for 5% strain 
level. Material: Solid Polycarbonate (PC); tested at room temperature. "Reprinted from 
Mechanics of Materials 24, Haddad, Y. M. and Iyer, S. S., On the characterization of 
the stress-relaxation response of a class of linear viscoelastic material using acousto
ultrasonics: A pattern recognition approach, 199-211(1996), with kind permission from 
Elsevier Science". 
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Figure 18.14. Feature-Feature projection for two of the selected features for 6% strain 
level. Material: Solid Polycarbonate (PC); tested at room temperature. "Reprinted from 
Mechanics of Materials 24, Haddad, Y. M. and lyer, S. S., On the characterization of 
the stress-relaxation response of a class of linear viscoelastic material using acousto
ultrasonics: A pattern recognition approach, 199-211(1996), with kind permission from 
Elsevier Science". 

With reference to Figures 18.12, 18.13 and 18.14, for each considered strain level, 
Pattern class 1 corresponds to the 'original' or 'unrelaxed' stress state. Pattern class 2 
represents the 'relaxed' stress state corresponding to the time interval of 10000 sec, Pat
tern class 3 represents the 'relaxed' stress state corresponding to the time interval of 
100000 sec. The results for training, evaluation and testing of the classifiers designed at 
the strain levels of 4%, 5% and 6% are listed in Table 18.3. As seen from Table 18.3, for 
the training and evaluation process of the designed classifier, 100% of the pattern values 
belonging to each of the three pattern classes forms three separate clusters for each of the 
strain levels considered. 

For the case of 4% strain level, the classification of unknown specimens to their 
respective class is almost 100%. For the 5% strain level, however, the classification rate is 
in the range of71-91%. For 6% strain level, the classification rate is in the range of89-
98%. This indicates a satisfactory level of classification. 

A review of literature revealed that no research work has been carried out yet, 
with the exception of the work presented here, on correlating the acousto-ultrasonic wave 
propagation data with the time-dependent behaviour of material systems, e.g., stress
relaxation ofviscoelastic materials. Vary (1988), however, obtained correlations between 
the so-called "stress wave factor (SWF)", a quantifying parameter similar to the acousto-
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ultrasonic parameter (AUP), and the reduction in tensile strength of fibre-reinforced 
composites. In evaluating adhesive bonded joints under tensile loading, Tanary (1988), 
obtained a straight line fit for normalized AUP that decreased with the increase in stress 
level. Williams et al.(l984), also, reported a change in AU measurement ofny1on ropes as 
the tension of the rope was increased. In this, the stress wave factor was found to de
crease with the increase in the stress level. 

TABLE 18.2. Normalized features selected for the identification of the 
stress-relaxation response of solid Polycarbonate (PC) specimens, tested 
at room temperature (Haddad and Iyer, 1996) 

Acousto-Ultrasonic feature Domain of Feature 
description the number 

waveform 

Inter peak distance from 1st to 
2nd greatest. Time 13 
Number of peaks above the sig-
nal base line. Power 37 
2nd greatest peak amplitude Power 43 
% of partial power in the 3rd 
octant. Power 49 •• 
Greatest peak position Phase 58 
Greatest peak amplitude. Time s·· 
2nd greatest peak position Cross-correla- 96* 

tion 
• Corresponding to number identification in the employed software. 
··For 5% strain level, features #5 and #96 were used instead of#49. 

18.4.2. IDENTIFICATION OF RESIDUAL IMPACT PROPERTIES 

. 

Low-energy repeated-impact constitutes an important degrading factor in the residual 
ability of solid polymers to withstand static and/or dynamic loadings. Since this type of 
polymer degradation is likely to affect in-service structural components, quantitative non
destructive examination techniques are often considered to assess repeated-impact damage 
in polymeric material systems. 

This case study is concerned with the application of acousto-ultrasonics, in con
junction with Pattern Recognition and Classification techniques, to the identification of 
residual impact properties of a class of polymeric material, namely, solid Polyvinylchloride 
(PVC), at room temperature. PVC specimens of different low-energy repeated impact 
damage states are processed by Acousto-ultrasonics (AU) to retrieve AU signals in the 
form of digitized records. These AU signals are grouped as distinct classes, each pertain-



www.manaraa.com

442 

ing to a known level of repeated impact damage. Describing features ofthese AU signals 
are used to build pattern recognition classifiers. These classifiers are used to identify 
unknown damage states in other PVC specimens by classifying the retrieved AU signals as 
belonging to one of the already defined damage states (classes). Again, the obtained 
results indicate that Acousto-ultrasonics in combination with Pattern Recognition and 
Classification methodology can be used for the quantitative non-destructive identification 
of damage states in PVC specimens of unknown low-energy repeated impact conditions. 

TABLE 18.3. Training, evaluation and testing of the classifier for the 
identification of the stress-relaxation response of solid Polycarbonate (PC) 
specimens, tested at room temperature. Classification scheme: 
K-Nearest Neighbour Classifier (Haddad and Iyer, 1996) 

Strain Time, Corresponding Training Evaluation Identification of 
level sec. pattern class (%) (%) unknown specimens 

% 

4% 100.0 100.0 100.0 

10000 2 100.0 91.04 97.10 

100000 3 100.0 98.75 100.0 

5% 100.0 100.0 91.40 

10000 2 100.0 100.0 71.23 

100000 3 100.0 100.0 79.27 

6% 100.0 100.0 98.80 

10000 2 100.0 100.0 89.0 

100000 3 100.0 100.0 96.25 

Controlled Parameters for AU Data-acquisition 
The values of relevant parameters pertaining to the transducer configuration and instru
mentation setup used for the acousto-ultrasonic measurements in the present case study 
are presented in Table 18.4. 

Material, Test Specimens and Classifiers 
A solid polymer, Polyvinylchloride (PVC) is chosen for this study. The material test 
specimens, of rectangular cross-section (i.e., 25.4 mm by 4.76 mm) and length of210 mm 
are cut of a constant-thickness sheet (4.76 mm). They were subjected to different levels of 
controlled low-energy repeated-impact by repeatedly dropping a weight of0.9 Kg from a 
height of 1.2 m a number of times. 
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TABLE 18.4. Controlled parameters for AU data-acquisition. Material: Solid 
Polyvinylchloride (PVC); tested at room temperature (Molina and Haddad, 1995) 

Parameter 

Voltage Range 
Gain 
Wave Frequency 
Sampling Rate 
Distance Between Transducers 
Couplant Medium 

Set Value 

0 to+ 12 Volts 
30 decibels 
750KHz 
3.125 MHz 
19 mm (0.75") 
Ultragel 111M 
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Three levels of repeated-impact damage are obtained by varying the number of impacts 
applied to each specimen. Accordingly, three classes of impact level are defined:· 

Class A : No impact, 
Class B : Five impacts, and 
Class C : Twenty impacts. 

The specimens belonging to the above-mentioned classes of impact were tested 
usmg acousto-ultrasonics under identical experimental conditions as outlined in Table 
18.4. Based on the retrieved AU signals, the following four classifiers are designed for 
each of the three input states (classes) using the procedure discussed earlier: 

i) Linear Discriminant Classifier designed for the first best-ranked feature 
ii) Empirical Bayesian Classifier designed for the three best-ranked features. 
iii) K-Nearest Neighbour Classifier designed for the four best-ranked features. 
iv) Minimum Distance Classifier designed for the four best-ranked features. 

Experimental Results of Pattern Recognition and Classification 
Figure 18.15 displays the averages of "Training" and "Evaluation" performances for the 
three classes of impact as pertaining to each of the four designed classifiers mentioned 
above. As shown in the figure, good performances are obtained for the four designed 
classifiers. The maximum of the averages of both Training and Evaluation Performances 
are reached for the case of the K-nearest Neighbour Classifier. 
Figure 18.16 presents the "Classification" performance for the four designed classifiers as 
the percentages of correctly classified AU signals that were not used in the classifier 
design. The experimental classification performance is obtained for each class by classifier 
testing with the respective Testing Set. Averages of the pertaining performances for the 
three classes of impact are also presented in Figure 18.16. Good performances are 
obtained for the four types of built classifiers. The maximum of Classification 
performance is reached for the case of Empirical Bayesian Classifier for the three impact 
classes under consideration. 
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Figure 18.15. Training and evaluation performances in percentage of correctly AU
signals for the four designed classifiers as pertaining to repeated-impact damage classes 
of solid Polyvinylchloride (PVC) specimens; tested at room temperature. "Reprinted 
from Molina, G. J. and Haddad, Y. M. (1995) On the identification of residual impact 
properties of materials by acousto-ultrasonics - A pattern recognition approach, Acta 
Mechanica Sinica , Vol 11, No. I, February 1995, 34-43, with kind permission from 
Allerton Press, Inc.". 

Discussion of Classifier's Performance 
With reference to Fig. 18.15, good results are experimentally obtained concerning the 
"Training' and "Evaluation" performances of the four designed classifiers. The fact that 
training and evaluation performances are as high as shown in Fig. 18.15 is an indication of 
the good repeatability of the AU-signal for the same specimen as well as between 
specimens of the same level of impact damage. On carrying out the present study, it was 
observed that classifiers that do not show good training and evaluation performances give 
subsequently poor "classification" performance. Thus, if a classifier is to be used in 
further identification of unknown-classification signals, excellent training and evaluation 
performances should be a minimum requirement for such classifier. 
???? With reference to Fig. 18.16, better classifier performance corresponds, in general, 
to the identification of class A comprising undamaged specimens. However, on carrying 
out the present study, it was observed that AU effective signal-discrimination between 
different levels of impact damage may be more difficult than that between damaged and 
undamaged-specimen classes. This may be explained by a more overlap of the probability 
density functions pertaining to the two classes of effective damage (B & C) than that 
occurring between the probability density functions pertaining to the class A (of 
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undamaged specimens) and any ofthe other mentioned two classes (B & C) of damaged 
specimens; Figure 18. 17. An alternative explanation of the different discriminating ability 
of the classifier for classes of undamaged and damaged specimens might be given by a 
dispersion of testing-set values for the damaged specimens that is more extensive than that 
for the undamaged ones. However, such a phenomenon was not observed in the present 
study. As an example, Figure 18.18 presents a graph ofthe "cluster boundaries" for the 
Classifier Sets compared with the feature values for the three pertaining Testing-Sets. 
This two-feature space plot is illustrated for the case of the two best-ranked features. 
Similarly, more dispersion is observed among feature values for damaged Testing-Sets B 
and C, than that for values of the same features in the undamaged Testing-Set of class A 
Figure 18.18 shows, in addition, that values of class A may be easily identified in the 
correct class, even if they show some dispersion with respect to the original Classifier-Set 
values. On the contrary, classes B and C may present a more difficult identification 
situation because oftheir overlapping. Bartos (1993), for instance, studied the feasibility 
of performing pattern analysis of impact-damage due to single impacts of different levels 
of energy on graphite-epoxy composite panels. Although using a different AU procedure 
from the one described here, Bartos (1993) obtained Bayesian Classifier's performances 
that are in good agreement with the performances obtained in the present study for this 
type of classifier. 
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Linear K-Nearest Minimum 
Discri- Neighbour Distance 
minant Classifier Classifier 

Classifier 

fZ2J CLASS A 1XJ CLASS B 
m~ CLASS C • AVERAGES 

Figure 18.16. Classification perfonnance in percentage of correctly classified AU
signals for the four designed classifiers of AU-signals pertaining to repeated-impact 
damage classes of solid Polyvinylchloride specimens; tested at room temperature. 
"Reprinted from Molina, G. J. and Haddad, Y. M. (1995) On the identification of 
residual impact properties of materials by acousto-ultrasonics - A pattern recognition 
approach, Acta Mechanica Sinica , Vol ll , No. 1, February 1995, 34-43, with kind 
permission from Allerton Press, Inc.". 
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With the above-discussed limitations, the presented application shows the viability 

of characterizing low-energy repeated impact damage in PVC specimens by AU 

methodology combined with Pattern Recognition and Classification (see Molina, 1994). 
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Figure 18.17. Probability density function for the first ranked feature (Greatest peak 

amplitude in the wave-autocorrelation domain). Data pertaining to repeated-impact 

damage classes of solid Polyvinylchloride (PVC) specimens; tested at room temperature. 

"Reprinted from Molina, G. J. and Haddad, Y. M. (1995) On the identification of 

residual impact properties of materials by acousto-ultrasonics - A pattern recognition 
approach, Acta Mechanica Sinica , Vol 11, No. I, February 1995, 34-43, with kind 
permission from Allerton Press, Inc.". 
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Figure 18.18. Cluster boundaries of classifier sets for the two best ranked features: First 

greatest peak amplitude in the wave-autocorrelation domain and second greatest peak 

amplitude in the wave-frequency domain. "Reprinted from Molina, G. J. and Haddad, 

Y. M. ( 1995) On the identification of residual impact properties of materials by acousto

ultrasonics - A pattern recognition approach, Acta Mechanica Sinica, Vol 11, No. 1, 

February 1995, 34-43, with kind permission from Allerton Press, Inc." 
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18.5 Design and Testing of a Pattern Recognition System 

Following our discussion in the previous section, the choice of different sets of reference 
patterns may imply, according to Equation (18.3), different mean and/or standard 
deviation values for the normalization procedure and corresponding normalization 
outcomes. Various Normalization Trees can be proposed for the normalization of the 
involved Testing Sets. In the following, we discuss the suitability of a number of 
Normalization Trees for an adequate testing of PR-classifiers. In this context, we confine 
our attention to the impact case study presented above, whereby the following 
Normalization Trees are employed (e.g., Haddad and Molina, 1998): 

NT(i): 

NT(ii): 

NT(iii): 

NT(iv) : 

I 
CLASS A 

TESTING SET 
Feature File 

Normalization Tree (i), Figure 18.19, comprises the three Testing 
Sets. 
Normalization Tree (ii), Figure 18.20, constitutes the pattern
vectors pertaining to a single specimen from one of the classes and 
the entire "Testing Sets" for the two other classes. 
Normalization Tree (iii), Figure 18.21, includes the entire "Testing 
Set" for one of the classes. 
Normalization Tree (iv), Figure 18.22, pertains to the "Testing Set" 
for one of the classes plus the three Classifier Sets previously used 
for building the PR-classifier. 

NORMALIZATION TREE (i) 
Organization Fi le 

I 
I I 

CLASS B CLASS C 
TESTING SET TESTING SET 
Feature File Feature File 

SPECIMEN A AU-data SPECIMEN B AU -data SPECIMEN C AU- data 
n•1 1• 1 .,., 

SPECIMEN "t.2 AU-data SPECIMEN 8 AU-data SPECIMEN C AU-data 
m•2 n•2 

.. .... ... . .. ... ... . ... -----· 

SPECIMEN A AU-data SPECIMEN B AU-data SPECIMEN C AU-data 
2 1 2m 2n 

Figure 18.19. Normalization tree (i). Arrangement of AU-data for the normalization of 
"Testing Sets" . "Reprinted from Haddad, Y. M. and Molina, G. J. (1998) On the design 
of acousto-ultrasonics - pattern recognition classifiers for the identification of material 
response states, Energy Sources Technology Conference & Exhibition, ETCE98-4572, 
Houston, Texas, February, 1998, with kind permission of ASME". 
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NORt.AALIZATION 
TREE (i i) 

Organ i zation F ile 

I I I 
CLASS A CLASS 8 CLASS C 

TESTING SET TESTING SET TESTING SET 

Feature File Feature F lie Feature File 

SPECit.AEN A 
1•1 

AU-data SP ECit.AEN 8 
OI-l 

AU -data SPECIMEN C AU -data .. , 
SPECIMEN B AU-da ta SPECIMEN C AU-data 

m•2 n•2 

.......... ····· ··· 

SP ECtt.AEN 8 
2m 

AU-data SPECIMEN C 
2n 

AU -data 

Figure 18. 20. Normalization tree (ii). Arrangement of AU-data for the normalization of 
"Testing Sets" . "Reprinted from Haddad, Y. M. and Molina, G. J. (1998) On the design 
of acousto-ultrasonics - pattern recognition classifiers for the identification of material 
response states, Energy Sources Technology Conference & Exhibition, ETCE98-4572, 
Houston, Texas, February, 1998, with kind permission of ASME". 

NORMALIZATION 
TREE (ITt} 

Organization File 

Cl.ASS A 
TESTING SET 
Featll'e File 

f- SPEOMEN A .. , AlJ-data 
1- SPEOMEN A "a AU-data 
f- • ._" .... 

~o..SP OM E EN Aa AU-data 
Figure 18.21. Normalization tree (iii). Arrangement of AU-data for the normalization 
of "Testing Sets". "Reprinted from Haddad, Y. M. and Molina, G. J. (1998) On the 
design of acousto-ultrasonics - pattern recognition classifiers for the identification of 
material response states, Energy Sources Technology Conference & Exhibition, 
ETCE98-4572, Houston, Texas, February, 1998, with kind permission of ASME". 
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NORMALIZATION 
TREE (iV) 

Organization File 

I I I I 
CLASS A CLASS B CLASS C Class A 

CLASSIFIER SET CLASSIFIER SET CLASSIFIER SET TESTING SET 
Feature File Feature File Feature File Feature file 

SPCIMEN A 1 AU-data SPCIMEN B 1 AU-data SPCIMEN C 1 AU-data 
SPCIMEN A 2 AU-data SPCIMEN B 2 AU-data SPCIMEN C 2 AU-data 

a 
a 

~rEGIMEN A1_1 AU-dat 
PECIMEN A 1_2 AU-dat 

................ 
~-PC"I.Iiii"EN B M AU-data 

................ 
~P.EC.IMEN A 21 AU-dat SPCIMEN A 1 AU-data SPCIMEN C N AU-data 

Figure 18.22. Normalization tree (iv). Arrangement of AU-data for the normalization 
of "Testing Sets". "Reprinted from Haddad, Y. M. and Molina, G. J. (1998) On the 
design of acousto-ultrasonics - pattern recognition classifiers for the identification of 
material response states, Energy Sources Technology Conference & Exhibition, 
ETCE98-4572, Houston, Texas, February, 1998, with kind permission of ASME". 

The above types of Normalization Trees are examples of the normalization 
arrangements that may be proposed for the testing of PR-classifiers: 

- NT(i) should be optimal for the employed normalization procedure and 
it may be a reference case for comparison with other Normalization Trees. 
Design of NT (i) requires, however, a priori complete knowledge of 
classification for the Testing Sets. It demands, before any normalization or 
classification to be carried out, that patterns be correctly identified into 
pertaining Testing Sets. Thus, building of NT(i) would not be possible if 
we were dealing with pattern vectors of unknown classification. Given this, 
NT(i) may be inadequate for testing the PR-classifiers. 

- NT (ii) is a special case of NT(i). It presents the situation that may arise 
in practice when normalizing by NT(i) a set of either known or unknown
classification patterns that comprises fewer patterns for one class than for 
the other two classes. 

- NT(iii) is a special case of NT(i). It presents the situation that may evolve 
when normalizing by NT(i) a set comprising only unknown-classification 
patterns which actually belong to a single class. 

a 
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- NT(iv) is the proposed arrangement to solve the problem of adequate 
normalization in this study. The case represented in Fig. 18.22 pertains to 
the use of NT(iv) for testing the PR-classifiers by means of known
classification Testing Sets. If NT(iv) is employed for the normalization of 
unknown-classification patterns, they should be arranged as displayed in 
Fig 18 23 

NORMALIZATION 
TREE (iV) 

Organization File 

I I I I 
CLASS A CLASS B CLASS C Unknown-Classification 

CLASSIFIER SET CLASSIFIER SET CLASSIFIER SET AU-data 
Feature file Feature File Feature File Feature File 

SPCIMEN A 1 AU-data SPCIMEN B 1 AU-data SPCIMEN C 1 AU-data SPCIMEN X 1 AU-data 
SPCIMEN A 2 AU-data SPCIMEN B 2 AU-data SPCIMEN C 2 AU-data SPCIMEN X 2 AU-data 
............... 

t~~iPC"I·r:,iEN B M AU-data 
················ . . . . . . . . . . . . . . . 

SPCIMEN A 1 AU-data SPCIMEN C N AU-data SPCIMEN X K AU-data 

Figure 18.23. Normalization tree (iv). Arrangement for the normalization of AU-data 
with unknown classification. 

Table 18.5 displays the experimental results for the four types of PR-classifiers 
when employed for testing the recognition performance for the considered three impact 
states of the material. The results of classification are presented, for each situation, as 
percentage of the correctly identified pattern vectors, as normalized by each of the above 
proposed types ofNormalization Trees. 

The results of Table 18.5 show, for the same type of PR-classifier, when 
identifying the same material state, significant differences of classification performance if 
the pertaining Testing Set was normalized by different Normalization Trees. In general, 
normalization by NT(ii) shows the highest classification performance, while NT(iii) shows 
the lowest classification performances. For NT(iv), however, classification performances 
are quite close to those pertaining to NT(i), specially for high rates of recognition. 
It is evident from the results above that the normalization process can strongly influence 
the testing performance. Previous work showed that pattern vector discrimination is 
influenced by the overlapping of the probability density functions, of occurrence of a given 
feature-value in a class, between classes; e.g., Haddad and Iyer (1995), and Molina and 
Haddad (1995&1996). Figure 18.24 shows, for instance, the probability density function 
for the first-ranked feature (greatest peak amplitude in the wave-autocorrelation domain 
of description) in the three considered impact classes, as experimentally obtained for the 
Classifier Sets dealt with earlier. In general, the more the referred to probability density 
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functions are separated for any two classes, the higher the corresponding classification 
performances for these classes. 

Case NT(ii) can be analysed on the basis of the normalization expression (18.3). If 
the hypothesis is made that the global mean ll(ii) of NT(ii) is not larger than the global 
mean 11<;> of NT(i), i.e., when, 

(18.6) 

and 

(18.7) 

where x1 is the non-normalized value of feature j in a pattern vector x. 
It can be reasonably assumed, for the purpose of this analysis, that the standard 

deviation sr;;J for NT(ii), as an average of corresponding values for all classes, where one 
of them is represented by a sample of pattern vectors pertaining to a single specimen, is 
not larger than sr;J, obtained for the three classes considered in NT(i), i.e., 

(18.8) 

By applying the above inequalities, (18.6) to (18.8), to the normalization equation 
(18.3), it follows that: 

XJ - 11(11) 

x(iiJ 

~} (11) ;:>: ~;(i) 

(18.9) 

(18.10) 

where in the above equations (18.9) and (18.10), ~ is the normalized value offeaturej 
for the pattern vector x, and subscripts (i) and (ii) refer, respectively, to NT(i) and NT(ii). 
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Figure 18.24. Probability density functions for the best ranked feature (Greatest peak 
amplitude in the wave autocorrelation domain). 

Equations (18.6) to (18.10) above, indicate that NT(ii) may give higher values for 
normalized features than those correspondingly obtained by NT (i). When, on the contrary, 
the mean of the feature values for the class is higher than the global mean of the Classifier, 
no such relation can be predicted for the normalized values. The analysis of equations 
(18.6) through (18.10) is schematically shown in Fig. 18.24, where the probabilities of 
occurrence p1 of feature j are assumed as Gaussian distributions. 

Figure 18.25 displays the probability density functions of unnormalized feature j 
for the concerned classes in NT(ii). This figure shows, also, the distributions of feature j as 
normalized by NT(i). Figure 18.25 suggests that normalization by NT(ii) may reduce the 
overlapping of the probability density function distributions for the class under 
consideration. Thus, it may lead to a higher classification performance as confirmed by the 
corresponding results in Table 18.5. 
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TABLE 18.5. Testing perfonnance for PR-classifiers of low-energy 
repeated-impact states in PVC specimens, tested at room temperature, 
when usin r · T "fi h · different "Norma IzatiOn rees or t e testmg sets 

Type of Class Normlllh.llti• TrPP"NT" 

Classifier (i) (ii) (iii) (iv) 

(I) Empirical Class A 93.33% 96.00% 20.67% 88.00% 

Bayesian Class B 74.00% 75.00% 54.00% 79.00% 

Classifier Class C 75.00% 7900% 6.00% 74.00% 

Average 80.78% 83.33% 26.89% 80.33% 

(II) Linear Class A 99.33% 100.00% 38.67% 90.00% 

Discriminant Class B 27.00% 30.00% 21.00% 3400% 

Classifier Class C 57.00% 60.00% 3900% 44.00% 

Average 61.11% 63.33% 32.89% 56.00% 

(III) K-Nearest Class A 98.67% 100.00% 44.67% 91.33% 

Neighbours Class B 6600% 65.00% 2700% 63.00% 

Classifier Class C 52.00% 62.00% 2.00% 47.00% 

Average 72.22% 75.67% 24.56% 67.11% 

(IV) Minimum Class A 93.33% 100.00% 18.67% 88.00% 

Distance Class B 75.00% 74.00% 54.00% 75.00% 

Classifier Class C 70.00% 84.00% 1000% 65.00% 

Av '70.44% 86.00% 27.56% 76.00% 

In general, Classifier performances for a given class, as tested by NT(ii), depend 
on the relative position of the mean of the unnormalized class with respect to the global 
mean, for each of the concerned features. Since NT(ii) is a particular case of NT(i), the 
latter may not be adequate for the normalization of Testing Sets wich are required for 
testing the Classifier. 

Analysis of the case NT (iii) on the basis ofthe normalization expression (18.3) is 
trivial. Since global mean ll(iii) and standard deviation s(iiil are those of the single class in 
the NT(iii), the normalized distribution will be centred around zero-mean. Figure 18.26 
presents schematics that can be used to compare the results pertaining to NT(iii) with 
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those of NT(i), where the probability of occurrence p1 of feature j is assumed to have a 
Gaussian distribution. It shows that NT(iii) gives, for the class under consideration, a 
normalized density function which may significantly overlap with the other two classes. 
This may explain why the classification performances are the lowest when experimentally 
tested by NT(iii). Since NT(iii) is a particular case of NT(i), the latter may not be 
adequate for the normalization of the involved Testing Sets in the testing of the pertaining 
Classifier. 

Classification performances for NT(iv) are very close to those of NT(i), specially 
for high percentages of recognition. Thus, NT(iv) may be adequate for testing the PR
classifier, given that the latter will be employed only when showing high recognition rates 
for the considered classes. Further, an important advantage of NT(iv) is that such 
normalization arrangement can always be built for both known and unknown classification 
patterns, as respectively, displayed in Figures 18.25 and 18.26. Thus, when using a PR 
Classifier, the operator must be provided with files containing the Classifier Sets, by which 
an NT(iv) can always be determined. Given this condition, testing of Classifiers by 
NT(iv) may give an adequate estimate of the probability of correct recognition for pattern 
vectors of a priori unknown classification. 

P. 
J 

11(ii) 

-1 0 
~ j(ii) 

-1 0 ~ j(i) 

Figure 18.25. Schematics of the effects of Normalization Tree (ii) on the probability 
density function of the dealt with classes. 
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Figure 18.26. Schematics of the effects of Normalization Tree (iii) on the probability 
density function of the dealt with classes. 
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The presentation in the foregoing shows the influence of the "normalization 
procedure" on the testing of computer-based Classifier performance. There are a number 
of Normalization Trees that can be built in a multiple-class problem. However, a critical 
examination of the most intuitively obvious "Normalization Tree (i)" for the normalization 
of pattern vectors shows that such a normalization arrangement may be inadequate for the 
testing the PR-classifier. 

Design of appropriate testing procedures requires, however, special consideration 
to the fact that testing a PR-classifier is performed in practice by pattern vectors whose 
classifications are a priori known. The intended purpose of such testing is to give an 
estimate of the Classifier success in the recognition of pattern vectors of unknown 
classification. 

Testing of the Classification Performance requires that the Normalization Tree 
employed in the testing process should be available for the further normalization of pattern 
vectors of unknown classification. This study proposes a Normalization Tree comprising 
pattern-vectors from Testing and Classifier sets, which can always be built, irrespective of 
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whether known or unknown classification was used for the concerned patterns. 
Experimental results show that testing of a PR-classifier by such proposed normalization 
arrangement may be adequate for the estimation of the PR-classifier performance. 
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APPENDIXD 

THE Z-TRANSFORM 

D.l. Introduction 

The subject of this Appendix is of assistance particularly to the reader of Chapter 13, where 
the z-transjorm is used frequently in the presented analytical treatment. In this context, this 
appendix serves as a brief introduction of the concept of the z-transjorm and a number of its 
basic properties. For more comprehensive treatment of the subject matter, the reader is 
encouraged to consult the references provided at the end of the appendix. 

The z-transform is the discrete-time counter-part of the Laplace transform. Meantime, 
it is the corresponding generalization of the discrete-time Fourier transform. Both Laplace and 
Fourier transforms have been dealt with in Appendix B. The properties of the z-transform 
parallel, in essence, those of Laplace transform, but, with some apparent variances or 
distinctions. These distinctions, as will be discussed in this Appendix, result essentially from 
fundamental differences between continuous- and discrete-time signals and systems. Similar 
to Laplace transform in the continuous-time case, and to Fourier transform in analysing both 
continuous-time and discrete-time data (signals), the z-transform is an important tool in 
performing transformations related to sequences in general. 

The z-transformation of a sequence x[ n] is denoted here by X(z), and is expressed 
as 

·~ 
X(z) = L x[n] Z -n (1) 

n~-oc 

where z is a complex variable. Alternatively, the z-transform of the sequence x[n] may be 
written as Z{x[n]}. In this case, the relationship between x[n] and its z-transform is 
interpreted as 

z 
x[n] _ X[z] (2) 

As already mentioned, similar to both Laplace and Fourier transforms (Appendix B), 
the z-transform possesses basic properties which make it a valuable tool in the analysis of 
"discrete-time" signals and systems. Some of these properties are presented below. 

458 
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D.2. Properties of the z-Transform 

Linearity 

If z X1 (z), ROC (Region of Convergence) = R1 

and 'S [n] 
z 

~(z), ROC=~ 

z 
(3) 

i.e., the region of convergence (ROC) of the indicated linear combination is (at least) the 
intersection of the individual regions of convergence R1 and R2 • 

Time-shifting 

If x [n] z 
X(z), ROC= Rx 

then, z x [n- n0 ] z -n°X(z), ROC= Rx(except for the possible addition or deletion 
of the origin or infinity). (4) 

Frequency of Shifting 

If x [n] 
z 

X(z), ROC= Rx 

then, 

z 

Time-reversal 

If x [n] 
z 

X(z), ROC= Rx 

then, 

x[ -n] 
z 

·a X(e-J"z), 

1 
ROC=-

Rx 

(5) 

(6) 

i.e., the region of convergence ofx[-n] is an inversion of Rx. In other words, ifz is in the 
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region of convergence ofX [n], then _!__ is in the region of convergence for x[-n]. 
zo 

Convolution Property 

If 
z 

~[n] 
z 

~(z), ROC= Rz 

then, 

x1 [n] * ~[n] z 
X 1 (z)~(z), ROC contains R1 n Rz (7) 

i.e., when two polynomials or power series X1 (z) and X2 (z) are multiplied, the coefficients 
in the polynomial representing the product are the convolution of the coefficients in the 
polynomials X1(z) and Xz(z). 

Differentiation (in the Z-domain) 

If x [n] 
z 

X(z), ROC= Rx 

then, by differentiating both sides of the z-transform expression ( 1 ), it follows that 

nx[n] z - z dX(z) ROC = "R 
dz ' ~'x (8) 

D.3. Relations Between the z-Transform and Fourier Transform 

There are a number of important relations between the z-transform and Fourier 
transform. In order to illustrate such relationships, one may express the complex variable z 
in the following polar form 

(9) 

in which r is the magnitude of z and lU is its angle. 

In view of(I) and (9), one writes 

n=-«> 
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or, 

~ 

X(rei"')= L {x[n]r-n}e·iwn (10) 
n = -ao 

In view of the definition of Fourier transform (Appendix B), it is apparent that the 
above expression, reads as X ( r ~ ), is the Fourier transform of the sequence x[ n] multiplied 
by r..,. That is 

X( rei"')= S{x[n] r -n} 

=X(z) 
(11) 

for r=l, i.e. IZI = 1, the z-transform (11) reduces to the Fourier transform of the sequence 
x[n], i.e., 

X(z) lz=ei"' = S {X [n]} 

Unit circle 

~ 

1 Re 

Figure D.l. The "unit circle" on the complex z-plane. (The z-transform reduces to the 
Fourier transform for values of z on the unit circle.) 

(12) 
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Thus, the z-transform reduces to the Fourier transform when the magnitude of the transform 
variable is equal to unity (i.e., for IZI = 1 or z = td"' ). In other words, and with reference to 
Figure D.l, the z-transform reduces to the Fourier transform, of the considered sequence, on 
the contour, in the complex z-plane, of a circle with a radius of unity (I Z I = 1 ). This circle 
in the z-plane is referred to as the "unit circle'' and plays an important role in the discussions 
concerning the properties of the z-transform. 

The convergence of the z-transform following immediately from relation (12). 
Referring to this relation, it is apparent that, for the convergence of z-transform, one requires 
that the Fourier transform of x [n] r·n converges. Thus, for a consequence x [n], one may 
expect this convergence to occur for some values of I Z I = r and not for others. In other 
words, there is associated with the z-transform, of a sequence x [n], a rank ofvalues ofthe 
complex variable z for which the transform X(z) converges. This rank of values is referred 
to as "the region of convergence (ROC)". 

ExampleD.! 

Consider the signal x [ n] =an u [ n], where u [n] is the unit-step time series. Then, 

·~ 
X(z)~ L x[n]z-n (13) 

n=-oo 

and, 
~ 

X(z) = L a nu[n] z-n 
n=-oo 

~ 

For convergence ofX"=O (z), we require that~ I az -1 I"< oo. Thus, the region of 
conveyance is the range of values ofz for which I az q < 1, or, equivalently, I z I> I a 1. 
Then, 

~ 1 
X(z) = L (az-1)" = ---

n=O 1-az-1 

z 
z-a 

lzl>lal 

Consequently, the z-transform converges for any finite value of a. 
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Example D.2 

Consider x [ n] = -a " u [- n - 1], where u [ n] is the unit-step time series. Then, 

X(z)=- L a"u[-n-1]z-" 
n=-oo 

-1 

=- L a" z -n 

n=-oo 

=- L a-n z" = - 1 - L (a-n z>" 
n=1 n=O 

If I a·1 z I< 1, or, equivalently, I z I< I a I, the sum in (14) converges and 

X(z) = 1 - -....::.1-
1 -a -1 z 

z 

z-a 

(14) 

(15) 

As with the Laplace transform, the determination of the z-transform requires both the 

algebraic expression and the region of convergence. 

ExampleD.3 

Consider the following signal which is the sum of two real exponential functions, and where 

u[n] is the unit-step time series. 

x[n]=( ~r u [n] +( + r u[n] (16) 

The z-transform is then 
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X ( z) = f {( _!_) 0 
U [ n] + ( _!_) 0 

U [ n] l Z - 0 

n = -oo 2 3 

+---
1 1 -1 --z 

3 

z( 2z -%) 

(17) 

(18) 

For the convergence of X(z), both sums in equation (17) must converge, which 
requires that both 

or, equivalently, I z I > _!_ and 
2 

I z I > _!_ . Thus, the region of convergence is I z I > _!_ . 
3 2 
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Example D.4 

The z-transform for the Example D.3 above can also be obtained using the results of 
Example D.l. From the linearity property of the z-transform, that is, if x [n] is the 
sum of two terms, then X (z) will be the sum ofthe z-transforms of the individual 
terms and will converge when both z-transforms converge (Section D.2 above). 

From Example D.3, one concludes that: 

( I) n Z - u[n]----, 
2 I-_!_z-1 

2 

I I z I>-
2 

- u[n]----, ( 1) n Z 
3 I-_!_z-1 

I I z I>-
3 

3 

and consequently, 

- u [n] + - u [n] _ ---( I)n (I)n Z 
2 3 I-_!_z-1 

2 

+---

D.4. Regions of Convergence for the z-Transform 

I I z I>-
2 

(19) 

(20) 

(21) 

In this section, a number of properties of the "regions of convergence" for the z-transform 
are presented (e.g., Oppenheim et al., I983): 

P.l: The ROC of X(z) consists of a ring in the z-plane centered about the origin. 
This property is illustrated in Fig. D.2, below, and follows from the fact that the ROC consists 
of those values ofz = r d"' for which x [n] r-n has a Fourier transform that converges. Thus, 
convergence is dependent only on r = I z I and not on w. Consequently, if a specific value of 
z is in the ROC, then all values ofz on the same circle (i.e., with the same magnitude) will be 
in the ROC. This by itself guarantees that the ROC will consist of concentric rings. As a 
result of Property 6, below, the ROC must, in effect, consist of only a single ring. In some 
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~'the inner boundary of the ROC may extend inward to the origin, thus reducing the RO. 
For other specific cases, however, the other boundary can extend outward to infinity (e.g., 
Oppenheim et al., 1983). 

lm 

Figure D.2. ROC as a ring in the z-plane. For specific cases the inner boundary can extend 
inward to the origin in which case the ROC becomes a disc. 

P.2: The ROC does not contain any poles. 
As with the Laplace transform, this property is simply a consequence of the fact that a pole, 
X (z) is infinite and therefore by definition does not converge. 

P.3: lfx[n] is of finite duration, thus the ROC is the entire z-plane, except possibly z=O 
and/or z =oo. 

A finite-duration sequence has only a finite number of nonzero values, extending, say from 
n = N 1, to n = N2, where N1 and N2 are finite. Thus, the z-transform X(z) is the sum of a 
finite number of terms, specifically, 

Nz 

X ( z) = L x [ n] z -n (22) 
n=N 1 

In this context, the following remarks may be made: 
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For z not equal to zero or infinity, each term in the sum (22) will be finite and 
consequently x (z) will converge. 
If N1 is negative and N2 positive so that x[n] has nonzero values both for n <0 and 
n>O, then the summation in (22) includes terms with positive powers of z and 
negative powers of z. As I z I - 0, terms involving negative powers of z become 
unbounded, and as I z 1- co, those involving positive powers of z become unbounded. 
Consequently, for N1 negative and N2 positive the ROC does not include z = 0 or 
z=co. 

IfN1 is zero or positive, there are only negative powers of z in expression (22), and 
consequently the ROC includes z = co. 

IfN~ is zero or negative, there would be only positive powers of z in equation (22) 
and consequently the ROC includes z = 0. 

P. 4: If xfn] is a right sided sequence, and if the circle I z I = r0 is in the ROC, then all 
finite values ofzfor which I z I> r0 will also be in the ROC 

In the context of this property, the following remarks may be made: 

A right-sided sequence is zero prior to some value ofn, say N0. If the circle I z I= r0 

is in the ROC, then, x [n] r0-n can be (absolutely) summed up or, equivalently, the 
Fourier transform of x [n] r0-n converges. 
Since x [n] is right-sided, the term x [n] multiplied by any real exponential sequence 
which, with increasing n, decays faster thanr0-n can also be (absolutely) summed up. 
This (more) rapid exponential decay will further alternate sequence values of n to 
become unbounded since x [n] z -n = 0 for n < N1. 

For right-sided sequences in general, the z-transform takes the form 

X(z)= L x[n]z-n (23) 
n=N1 

where N 1 is finite and may be positive or negative: 

If N1 is negative, then the summation in (23) includes terms with positive sources of 
z which become unbounded as I z 1- co. Consequently, for the right-sided sequences 
in general, the ROC will not include infinity. For the particular class of" casual • " 
sequences, however, N1 will be non negative, and, consequently, the ROC will extend 
to infinity. 

•A signal is often referred to as "casuaf' if it corresponds to the impulse response of 
a casual system, i.e., is zero fort< 0 (continuous time), or, n < 0 (discrete time). 
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P. 5: If x[n] is a left-sided sequence and if the circle I z I = r0 is in the ROC, then, all 
values of zfor which 0 <I z I < r, will also be in the ROC 
In general, for left-sided sequences, from the definition of the z-transform, the 
summation for the z-transform can be written in the form: 

Nl 

X(z) = L x[n] z -n 

n=-oo (24) 

where N2 may be positive or negative. 

If N2 is positive, then eqn. (24) includes negative powers of z, which become 
unbounded as I z I - 0. Thus, for left-sided sequences in general, the ROC will not 
contain z=O. For the particular class of left-sided sequences which are anti-casual 
[i.e., x [ n ] = 0; n ;:., 0, so that N2 in (24) is less than or equal to zero], the ROC will 
contain z = 0. 

P. 6: lfx[n] is two-sided and if the circle I z I= r0 is in the ROC, then the ROC will 
consist of a ring in the z-plane which includes the circle I z I = r II" 
The ROC for a two-sided signal can be examined by expressing x [ n ] as the sum of 
a right-sided and left-sided signals: 
The ROC for the right-sided component is a region bounded on the inside by a circle 
and extending outward to (and possibly including) infinity. 
The ROC for the left-sided component is a region bounded on the outside by a circle 
and extending inward to, and possibly including, the origin. 
The ROC for the composite signal includes the intersection of the above two zones. 
As illustrated in Fig. 0.3, the overlap (assuming it exists) is a ring in the z-plane. 

D.S. The Inverse z-Transform 

With the "inverse .:;-transform", we seek to determine a sequence when its z-transform is 
known. Expressing, as dealt with earlier, the z-transform as the Fourier transform of an 
exponentially weighted sequence, i.e., 

(25) 

where I z I = r is in the ROC. 
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lm 

Z-plane Im 

Re 

Im 

(A) 
(B) 

Re 

Z-plane 

(C) 

Figure D.3. (A) ROC for a right-sided sequence; (B) ROC for left-sided sequence; (C) The 

intersection of the ROC's in (A) and (B) represents the ROC for a two-sided sequence 

that is the sum of a right-sided and left-sided sequences. 

(Adapted after Oppenheim et al., 1983) 

Meantime, applying the inverse Fourier transform to both sides of (25), 

x[n] r-" = S -I {X(rei"')} 

469 

(26) 
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Using the inverse Fourier transform expression, it follows that 

x[n] =r"-1- J X(rej"')ej"'"dw 
21t 

211 

or 

I f . . x[n] =- X(reJ"')(reJ"'")dw 
21t 

211 
(27) 

Changing the variable of integration from w to z. With z = r d"' and r fixed, then d z = j r d"'= 
j w dw or dw = (1/j) z'1 dz. The integration in (27) is over a 2 1t interval in w which, in 
terms ofz, corresponds to one interval around the circle I z I= r. Consequently, in terms of 
an integration in the z-plane, equation (27) can be written as 

x[n]=-1-. ~X(z)z"- 1 dz 
2 1tJ (28) 

where the ~ denotes an integral about counter clockwise closed circular contour centered at 
the origin and with radius r. The value of r can be chosen as any value for which X(z) 
converges. 

Equation (28) is the formal expression for the inverse z-transform and is the discrete
time expression for the inverse Laplace transform. Formal evaluation of the inverse transform 
integral Eqn. (28) requires the use of contour integration in the complex plane. 

There are however, a number of alternative procedures for obtaining a sequence from 
its z-transform. As with Laplace transforms, one particular useful procedure for rational z
transforms consists of expanding the algebraic expression into a partial fraction expansion and 
recognizing the sequence associated with the individual terms. 
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TABLE D.l. Some common z-transfonn pairs** 

x (n) X (z) Region of convergence, 
"ROC" 

l>(n) = {~ n=O 
Allz 

n ... o 

All z (except 0 ifm > 0) 
& (n- m) z·m 

or All z (except"" ifm < 0) 

u(n) = {~ n:;-:0 z 

n<O z-1 
I z I> 1 

u(-n-1) 
z 

I z I< I 
I- z _, 

a"u(n) 
z 

lzl>lal 
z-a 

-a"u(-n-1) 
z 

lzl<lal 
z-a 

na"u(n) 
az 

I z I> I a I 
(z- a)2 

-na"u(-n) az 
lzl<lal 

(z- a)2 

-na"u(-n-1) az 
lzl<lal 

(z- a)2 
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x (n) 

sin(nw) u(n) 

an sin (nw) u(n) 

an cos (nw) u(n) 

X (z) 

zsinw 

z 2 - 2z cos w + 1 

az sin w 

z 2 - 2 az cos w +a 2 

z(z- a cos w) 

z 2 - 2 a z cos w + a 2 

Region of convergence, 
"ROC" 

I z I> 1 

**where u(n) is the unit-step time series. 

Property 

1. Linearity 

2. Time-shift 

3. Convolution 

4. Product 

TABLE D .2. Fundamental properties of the z-transforrn 

x (n) 
y (n) 

a x(n) + py(n) 

x(n- m) 

L x(k)y(n- k) 
k=--

x(n) y(n) 

X(z) 
y (z) 

a X(z) + P Y(z) 

z -m X(z) 

X(z) Y(z) 

Region of 
convergence, 

"ROC" 
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Property x (n) 
y (n) 

5. Time-transpose x (-n) 

6. Time- nx (n) 
multiplication 

00 

7. Correlation L x(k)y(n +k) 

8. Exponential 
multiplication 

D.6. Problems 

k=-oo 

a nx(n) 

X(z) 
y (z) 

X(z-1) 

dX(z) 
-z---

dz 

X(a -I z) 

Region of 
convergence, 
"ROC" 

473 

1. Find the regions of convergence concerning the z-transform properties given in 

Table D.2 above. 

2. Find X(z) and the corresponding regions of convergence for the following time 

series: 

(i) 

(ii) 

(iii) 

X(n) = ..o.(n_+k_-_1_:;)_! a nu(n) 
n!(k-1) 

where u(n) is the unit-step time series. 

X(n) =a In I 

x(n) =t 
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(iv) 

(v) 

(vi) 
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SUBJECT INDEX 

A 
Acceleration wave, 241-246, 250-253 
Acousto-ultrasonics, 422-429 
Actuator, 406 
Adiabatic sheering, 46-48 
Aluminum, 14, 15, 18, 19, 21, 23, 25, 26, 

27,385 
Associative material (and non-associative 

material), 52 

B 
Biaxial loading 

Dynamic, 28 
Bifurcation, 60-62, 64-70 
Birth-and-death model, 398-400 
Boltzmann's superposition principle, 

228-231 
Boundary value problem 

Viscoelastic, 254-284 

c 
Characteristics 

of the equation of motion, 130, 
132-137 

Classification methodology, 422, 423, 
429-456 

Coincidence lattices, 384 
Combined stress, 156-165 
Composite, 295-372 
Conservative loading, 52 
Copper,21,22,23,25,26,46,385 
Correspondence principle, 231-234 
Crack, 393-400 
Cyclic loading, 18, 19 

Damage, 339-372 
Deformation 

D 

Dynamic, of metals, 11-48 
Discrete-time, 181-215 
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Dissipation, 217-219 
Dwell time, 18 
Dynamic 

behaviour 
of metals, 11-48 
of heterogenous materials, 

295-401 
biaxial loading, 28 
plastic behaviour, 124-166 
system identification method, 

179-215 
thermoelasticity, 166 

E 
Electro-rheological fluid, 417-419 
Equilibrium second-order modulus, 239 
Equilibrium tangent modulus, 23 9 

F 
Fibre-reinforcement, 295-371 
Fracture, 393-400 
Frequency response function, 183 
Friction 

Internal, 217-219 

G 
Gold, 385 

H 
Heterogeneous material, 295-371 

I 
Impact, 137-141, 441-456 
Input 

Pulse, 224 
Sinusoidal, 221-224 

Instability 
Plastic, 52-81 

Instantaneous second-order modulus, 
239 

Instantaneous tangent modulus, 238 
Intelligent material, 404-421 
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Internal 
damage,: 388-400 
friction, 217-219 

Iron, 26,27 
Inter -elemental 

bonding,385, 386,392,393 
boundary,384, 391-393 
topology, 384 

Inverted utility function, 248, 249 

J 
Jump test, 16, 22 

K 
Kolsky bar, 13, 16, 20, 22, 23, 25 

Lead,26,27 
Loading 

L 

Biaxial, Dynamic, 28 
Conservative, 52 
Cyclic, 18, 19 
Dynamic, of metals, 11-48 
Shock,32,33,246-253 
Static, 12 
Sub-static, 11 

Loading/unloading boundary, 125, 141-
150 

Localization effect, 5 2-81 

M 
Magnesium, 21, 22, 23, 24, 25 
Material 

Associative (and non-associative), 
52 

operator, 373, 384, 385, 392, 393 
Memory, 406 
Mesodomain, 3 79 
Metallurgical 

effects, 30-48 
Microelement, 3 79 
Micromechanics, 295-372, 373-402 

Modulus 
Equilibrium Second-Order, 239 
Equilibrium Tangent, 239 
Instantaneous Second-Order, 239 
Instantaneous Tangent, 238 

N 
Nonlinear 

viscoelastic wave propagation, 
234-254 

Normalization tree, 447-456 

0 
Optical fibre, 411, 412 

p 
Pattern recognition, 422, 423, 429-456 
Piezoceramic, 407, 408 
Piezoelectric, 407-411 
Plastic instability, 52-81 
Processor, 406 
Probabilistic micromechanics 

(see stochastic micromechanics) 
Pulse input, 224 

R 
Random walk, 394-398 
Reinforcement 

Fibre, 295-371 
Runge-Kutta method, 208, 212 

s 
Sensor, 406 
Shape memory alloy (SMA), 412-415 
Shape memory polymer, 416, 417 
Sheer 

bands (also shear banding), 52 
Sheet molding compound (SMC), 321-

327 
Shock 

loading, 32-43, 246-253 
wave, 32-43, 246-253 

Sinusoidal input, 221-224 
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Smart material (see intelligent material) 
Split Hopkinson pressure bar (see Kolsky 
bar) 
Steel, 20, 21, 22, 28, 30, 46 
Stiffness, 339-372 
Stochastic micromechanics, 3 73-402 
Strain 

aging, 26 
Strain-rate 

effects, on metals, 11-48, 58-75 
history, 17, 18, 22 
sensitivity, 17, 20 

Stress-relaxation, 43 5-441 
Stress 

Combined, 156-165 
Structural element, 378-380, 384, 390, 

391 
Superposition principle (see Boltzmann's 

superposition principle), 
System characteristic function, 184-215 

T 
Temperature 

effects, 58-62 
Thermoelasticity 

Dynamic, 166 
Thermo-Elasto-Viscoplastic Solid, 

70-75 
Thermoviscoelastic boundary value 

problem, 277-284 
Titanium, 22 
Transform operator 

(see Material operator) 

u 
Unloading problem, 141-150 

v 
Viscoelastic boundary value problem, 

254-284 
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Viscoelastic wave, 217-254 
Viscoplastic solid 

Thermo-elasto, 70-75 

Wave 
w 

Acceleration, 131, 241-246, 250-
253 

Coupled (also partially coupled), 
125 

Elastic, 82-123 
equation, 228-231 
dilatational, 89 
Inelastic, 84, 85 
lrrotational, 91-96 
propagation, 

in bounded elastic solids, 
105-115 

in semi-infinite media, 
96, 224-228 

in unbounded elastic 
solids, 87-91 

reflection (also refraction), 103-
105,109-111 

rotational, 89, 91-96 
Shock, 150-156,246-253 
Surface, 98-103 
Viscoelastic, 217-254 

z 
z-transform 

Definition of, 458 
Properties of, 459-465, 470-473 
Regions of convergence, 465-468 
Inverse, 468-4 70 

Zinc, 21, 23, 25 
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A 
Acceleration wave, II: 241-246, 250-253 
Acousto-ultrasonics, II: 422-429 
Actuator II: 406 
Adiabatic sheering, II: 46-48 
Admissibility, 1: 141 
Alloys 

Creep of, 1: 244-257 
Stress-relaxation of, 1: 257-265 

Aluminum, II: 14, 15, 18, 19, 21, 23, 25, 
26,27,385 

Anelastic strain, I: 259 
Associative material (and non-associative 

material), II: 52 

B 
Biaxial loading 

Dynamic, II: 28 
Bifurcation, II: 60-62, 64-70 
Birth-and-death model, II: 398-400 
Boltzmann's superposition principle, 

1: 286, 302, 326 
II: 228-231 

Boundary Value Problem 
Elastic, 1: 171-203 
Plastic, 1: 224-235 
Viscoelastic, II: 254-284 

c 
Cauchy's 

deformation tensor, 1: 87 
first equation of motion, 1: 53, 167 
first fundamental theorem, I: 94 
second equation of motion, 

1: 55, 157 
second fundamental theorem, 1: 96 
stress (see also stress tensor), 

1: 38, 39, 57, 59, 63, 209 
Characteristics 

ofthe equation of motion, 
II: 130, 132-137 
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Christoffel symbol, I: 291-293 
Classification methodology, II: 422, 423, 

429-456 
Clausius-Duhem inequality, 1: 127, 131, 

141, 148, 149, 159, 160 
Clausius inequality, 1: I48 
Clausius integral, 1: I48 
Cofactor, I: 278 
Coincidence lattices, II: 384 
Combined stress, II: I56-I65 
Compatibility condition, I: 10 I, I 02 
Compliance, 

Complex, I: 95, 299, 3IO 
Loss, 1: 295, 296, 299, 300 
Storage, I: 295, 299, 300 

Composite, II: 295-372 
Conservation 

of energy, I: 125, 127 
of mass, 1: 40 

Conservative loading, II: 52 
Constitutive equation, I: 137, 2I7, 2I8, 

249-252 
Continuity 

of mass, 1: 4I 
ofmomentum, 1: 42, 55 

Continuum, 1: 38, 39, I50 
Contravariant 

physical component, I: 378, 379 
tensor, 1: I6, 369,370, 380 

Copper, II: 2I, 22, 23, 25, 26, 46, 385 
Correspondence principle, II: 23I-234 
Covariant 

derivative, 1: 379, 380 
physical component, I: 378, 379 
tensor, 1: I6, 369 

Crack, II: 393-400 
Creep 

recovery, 1: 280, 289 
response, I: 244-257, 259, 274, 

277, 279, 280, 284-286, 
28~ 29~ 29~ 30I, 30~ 
317, 3I9 

ofmetals, I: 244-256 



www.manaraa.com

480 

Curl of a vector, 1: 30 
Curvilinear tensor, I: 362-386 
Cyclic loading, II: 18, 19 

D 
Damage II: 339-372 
Deformation 

Definition of, 1: 85, 86, 88 
Dynamic, of metals, II: 11-48 
Elastic, 1: 205 
IIomogeneous, I: 98 
Inelastic, I: 205 
Isochoric, 1: 97 
maps, 1: 254-256 
rate, 1: 108 
Rigid, 1: 97 
Simple extension, I: 98 
Simple sheer, I: 99 

Delta function, 1: 388-391 
Determinant, 1: 16, 32, 365-368 
Differential geometry, I: 284 
Dilatation, 1: 94, 97, 169 
Discrete-time, II: 181-215 
Dissipation, II: 217-219 
Divergence of a vector, 1: 29 
Dwell time, II: 18 
Dynamic 

behaviour 
of heterogenous materials, 

II: 295-401 
ofmetals, II: 11-48 

biaxial loading, II: 28 
plastic behaviour, II: 124-166 
system identification method, 

II: 179-215 
thermoelasticity, II: 166 

E 
Electro-rheological fluid, II: 417-419 
Elastic 

boundary value problem, 
1: 171-203 

deformation, 1: 205 

response, I: 158-204 
Elasticity 

Linear, I: 161-170 
Nonlinear, 1: 159-161 

Elastic-plastic response, 1: 205-243 
Entropy, I: 118, 142 
Equilibrium second-order modulus, II: 239 
Equilibrium tangent modulus, II: 239 

F 
Fading memory, I: 140, 145 
Fibre-reinforcement, II: 295-371 
Fourier 

spectrum (in viscoelasticity), 
I:293,296,299,306, 310, 
314,315,319 

transform, 1: 405-414 
Fracture, II: 393-400 
Frequency 

response function, II: 183 
spectrum (in viscoelasticity), 

1: 304 305, 325 
Friction 

Internal, II: 217-219 

Gold, II: 385 
Gradient 

G 

of deformation, 1: 86 
of a scalar, 1: 28 
of a vector, 1: 29 

H 
IIardening rule, I: 215,219, 220 
IIeaviside function, 1: 388, 390, 391 
IIeterogeneous material, II: 295-371 
IIereditary response, 1: 275 
IIysteresis loop, 1: 207 

I 
Impact, II: 137-141,441-456 
Index, 1: 12 
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Indicial notation, I: 12-15 
Integral transform, 1: 392-414 
Input 

Pulse, II: 224 
Sinusoidal, II: 221-224 

Instability 
Plastic, II: 52-81 

Instantaneous second-order modulus, 
II: 239 

Instantaneous tangent modulus, II: 23 8 
Intelligent material, II: 404-421 
Internal 

damage, II: 388-400 
friction, II: 217-219 

Iron, II: 26, 27 
Inter -elemental 

bonding, II: 385, 386, 392, 393 
boundary, II: 384, 391-393 
topology, II: 384 

Inverse, 1: 32 
Inverted utility function, II: 248, 249 
Isoclinic lines, 1: 61, 62, 63 
Isotropic 

hardening, I: 216, 217 
points, I: 62, 64 

J 
Jacobean, I: 16, 86 
Jump test, II: 16, 22 

K 
Kinematic hardening, 1: 216, 217, 249 
Kolsky bar, II: 13, 16, 20, 22, 23, 25 
Kronecker delta, 1: 19, 362-364 

L 
Laplace transform, I: 393-405 
Laplacian operator, 1: 30, 383 
Lead, II: 26, 27 
Loading 

Biaxial, Dynamic, II: 28 
Conservative, II: 52 
Cyclic, II: 18, 19 

Dynamic, ofmetals, II: 11-48 
function, I: 215 
Quasi-static, 1: 273-355 
Shock, II: 32-43,246-253 
Static, I: 38-80, 137-264 

II: 12 
Sub-static, II: 11 

Loading/unloading boundary, 
II: 125, 141-150 

Localization effect, II: 52-81 

M 
Magnesium, II: 21, 22, 23, 24, 25 
Material 

481 

Associative (and non-associative), 
II: 52 

continuum, 1: 150 
derivative, I: 107 
frame indifference, Principle of, 

1: 11, 138 
invariance, I: 161, 163 
objectivity, I: 130 
operator, II: 373, 384, 385, 392, 

393 
symmetry, 1: 130, 164, 165 
time-rate, I: 107 

Memory, II: 406 
Mesodomain, II: 379 
Metals 

Creep of, I: 244-257 
Stress-relaxation of, 1: 257-265 

Metallurgical effects, II: 30-48 
Metric tensor, I: 372-374 
Microelement, II: 379 
Micromechanics, II: 295-372, 373-402 
Mixed components (of a tensor), 

I: 17,281 
Modulus 

Bulk, 1: 168, 169 
Equilibrium, I: 282 
Equilibrium Second-Order, II: 239 
Equilibrium Tangent, II: 239 
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Motion 

Instantaneous Second-Order, 
II: 239 

Instantaneous Tangent, II: 238 
Complex, 1: 308, 309, 310 
Shear (or rigidity), 1: 169 

Analysis of, 1: 1 07 
Lagrangian and Eulerian, I: 85 

N 
Nonlinear 

viscoelastic wave propagation, 
II: 234-254 

Normalization tree, II: 447-456 

0 
Optical fibre, II: 411, 412 

p 

Pattern recognition, II: 422, 423, 429-456 
Piezoceramic, II: 407, 408 
Piezoelectric, II: 407-411 
Plastic 

behaviour, 1: 205 
instability, II: 52-81 
potential function, 1: 230 
strain, 1: 259 

Poisson's ratio, I: 166, 168 
Principle of 

equipresence, 1: 140, 141 
fading memory, 1: 141 
positive internal production 
of energy, 1: 144 

Processor, II: 406 
Probabilistic micromechanics 

(see stochastic micromechanics) 

Q 
Quasi-static behaviour (or loading), 

1: 273-355 

R 
Random walk, II: 394-398 

Relative tensor, 1: 376, 377 
Relaxation-

frequency, 1: 305 
limit, I: 261 
time, 1: 302, 306, 307, 310, 315, 

323 
Reinforcement 

Fibre, II: 295-371 
Response behaviour 

Creep, of metals and alloys, 
1: 244-256 

Elastic, 1: 159-204 
Elastic-Plastic, 1: 206-243 
Stress-relaxation, of metals 
and alloys, 1: 256-264 
Viscoelastic, I: 273-355 

Retardation-
frequency, 1: 304 
time, I: 302, 303, 306, 307, 310, 

315, 320 
Rheology, 1: 328, 329 
Rotating disc, 1: 17 5-182 
Rotation tensor, I: 91, 92 
Runge-Kutta method, II: 208, 212 

s 
Sensor, II: 406 
Shape memory alloy (SMA), II: 412-415 
Shape memory polymer, II: 416, 417 
Sheer 

bands (also shear banding), II: 52 
lines, 1: 223 

Sheet molding compound (SMC), 
II: 321-327 

Shifting property, I: 301 
Shock 

loading, II: 32-43, 246-253 
wave, II: 32-43, 246-253 

Sigmoidal creep response, I: 24 7 
Simple Materials, 1: 139, 146 
Sinusoidal input, II: 221-224 
Slip line field, I: 232, 233 
Smart material (see intelligent material) 
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Solid disc, 1: 179 
Split Hopkinson pressure bar (see Kolsky 

bar) 
Steel, II: 20, 21, 22, 28, 30, 46 
Step function (see Heaviside function) 
Stitlhess, II: 339-372 
Stochastic micromechanics, II: 373-402 
Strain 

aging, II: 26 
Strain-rate 

Stress 

effects, on metals, II: 11-48, 58-75 
history, II: 17,18,22 
sensitivity, II: 17, 20 

Combined, II: 156-165 
Piola-Kirchhoff's, 1: 75, 76, 149 
plane, 1: 170 
principal directions, 1: 56, 223 
principal planes, 1: 56 
principal values, 1: 56 
singularity, 1: 158 
symmetry, 1: 53 
tensor, 1: 38, 39, 57, 59, 63 
trajectories, 1: 59, 60 
vector, 1: 44 

Stress-relaxation, 1: 257-266, 280, 282, 
283,290,291,292,299,302,304-
306,310,315,322,323 
II: 435-441 
ofmetals, 1: 256-264 

Structural element, II: 378-380, 384, 390, 
391 

Superposition principle (see Boltzmann's 
superposition principle) 

System characteristic function, II: 184-215 

T 
Temperature 

effects, II: 58-62 
Tensor 

Cartesian, 1: 11-36 
Curvilinear, 1: 362-386 

Thermomechanical continua, I: 118 

483 

Thermodynamics 
admissible process, 1: 160 
constitutive equations, Derivation 
of, 1: 329-334 
equilibrium, 1: 124 
deformation process, 1: 129 
First law of, 1: 119, 127 
Laws of, 1: 128 
Restrictions imposed by, 1: 139 
Second law of, 1: 128, 130 

Thermoelasticity 
Dynamic, II: 166 

Thermo-Elasto-Viscoplastic Solid, 
II: 70-75 

Thermorheologically complex material, 
1: 351-355 

Thermorheologically simple material, 
1: 334-351 

Thermoviscoelastic boundary value 
problem, II: 277-284 

Thermoviscoelasticity, 1: 327-355 
Time-

dependency, 1: 273-355 
memory, 1: 273-355 

Titanium, II: 22 
Torsion, 1: 185, 186, 191, 192, 194 
Trace, 1: 31 
Traction vector (see stress vector) 
Transform 

Laplace, 1: 393-405 
Fourier, 1: 405-414 

Transform operator 
(see Material operator) 

u 
Uniqueness of solution, 173 
Unloading, 1: 207 

Vector 

II: 141-150 

v 

Curl of, 1: 30, 383 
Divergence of, 1: 29, 382 
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Gradient of, I: 29 
Velocity field, I: 222 
Viscoelastic boundary value problem, 

II: 254-284 
Viscoelasticity, I: 273-355 
Viscoelastic wave, II: 217-254 
Viscoplastic solid 

Thermo-elasto, II: 70-75 
Vorticity, I: 108, 109 

Wave 
w 

Acceleration, II: 131,241-246, 
250-253 

Coupled (also partially coupled), 
II: 125 

Elastic, II: 82-123 
equation, II: 228-231 
dilatational, II: 89 
Inelastic, II: 84, 85 
Irrotational, II: 91-96 
propagation, 

in bounded elastic solids, 
II: 105-115 

in semi-infinite media 
II: 96, 224-228 

in unbounded elastic 
solids, II: 87-91 

reflection (also 
refraction), II: 103-105, 
109-111 

rotational, II: 89, 91-96 
Shock, II: 150-156, 246-253 
Surface, II: 98-103 
Viscoelastic, II: 217-254 

Work-hardening, 1: 207, 220, 221 

Yield 
y 

condition, 1: 208, 210, 225, 226, 
227,229,231,233,235 

curve, 1: 213, 214 
function, 1: 208 
general function, I: 230, 232 
quadratic condition, I: 227, 228 
surface, I: 211, 212, 214 

z 
z-transform 

Definition of, II: 458 
Properties of, II: 459-465, 470-

473 
Regions of convergence, 

II: 465-468 
Inverse, II: 468-470 

Zinc, II: 21, 23, 25 




